
Research Inventy: International Journal of Engineering And Science

Vol.8, Issue 2 (May 2018), PP -18-30

Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com

18

Closed Continuous Visible Domain Partitioning Of 3D Meshes

1
Medhat Rashad,

1
Mohamed Khamiss, And

1,2
Mohamed MOUSA

(Medhat_Rashad, Mohamed_Khamiss, Mohamed_Mousa)
1
Faculty of Computer & Informatics - Suez Canal University – Ismailia – Egypt
2
Faculty of Computers & Information Technology, University of Jeddah, KSA

Corresponding Author: Medhat Rashad

Abstract - The As the computer processing power is being improved, the size of data is being increased. One of

the most powerful recent enhancements is that of the Graphics Processing Unit (GPU). In last years, almost

mesh operations and GPU have become linked issues. In fact, the mesh partitioning and GPU are used in

several computer graphics applications. In this paper, we present an efficient GPU-based algorithm for

partitioning large-scale 3D meshes. The proposed algorithm is called “Closed Continuous Visible Domain

(CCVD)” where the processing time, quality and balancing between the parts are our objectives. The

partitioning process is parallelized on GPU, and we have evaluated the performance of the proposed algorithm

on various large benchmarks. Several experiments have been conducted to evaluate the performance of the

proposed algorithm using the Princeton benchmarking. Practically, final results quality is better than the

common methods, besides those sub-parts are near to the human Perception. Finally, the execution time of the

proposed GPU-based CCVD partitioning is reduced by approximately 40% of CPU time

Keywords – GPGPU, 3D Mesh Partitioning

--- --

DATE OF SUBMISSION: 31-05-2018 DATE OF ACCEPTANCE: 15-06-2018

I. Introduction
In computer graphics and animation, devices have been improved, as the size of 3D mesh data also

rapidly growing. This improvement is motivated by the needful for more points of interest and higher precision

in representation and making objects. Various algorithms have been presented to partition large scale meshes.

These algorithms are classified into two classes according to whether the partitioning is supervised or

unsupervised. The first class needs post processing, while the second one is not. The post-processing treatments

has many factors as jagged boundaries, smoothness, refinement or sharpness to purify the details of the shape

[40], [6]. The set of algorithms that belongs to the first class needs additional time for enhancing the outputs.

However, the algorithm’s output in the other class was consistent mesh partitioning [36], [20]. Shape Diameter

Function (SDF) is the most strongly and frequently in the second class. The best approach to partition a shape

into disjointed subparts is the approach which final result is consistent mesh partitioning [36]. The term

consistent mesh partitioning in SDF means that at mesh surface, a scalar function is defined. This function

measures the diameter of the shape’s volume within the neighborhood of all points on the surface. Hence, mesh

partitioning is the process of decomposing a shape into meaningful parts. This kind of partitioning improve the

solution of many computer graphics problems such as: modeling [10], shape compression [1], simplification [8],

texture mapping [21], skeleton extraction [20], and metamorphosis [12], [43]. Geometric descriptions and

semantic components, are the two ways that almost partitioning algorithms used. In the geometric

characterization, the mesh is divided into a number of patches with respect to some particular geometrical

attributes, such as curvature and geodesic distance [11], [35], [8], [42], and [13]. However, the mesh is divided

into sub-parts that match the related features of the shape based on human perception, that led to the logic

components [22], [20], [24], and [19]. In [26] discussed the various methods that used for mesh partitioning.

Many techniques have been implemented over CPU. In this paper, we propose GPU-based partitioning for

large-scale 3D meshes. Our method characterized by work in a parallel manner. Beside that sub-parts that

represent the shape are balanced in the points.

Closed Continuous Visible Domain Partitioning of 3D Meshes

19

Figure1) Robust of CCVD in different Armadillo orientations

 “Fig. 1” shows that the number of parts looks to be the same. Although, the orientation of the model

was changed. That show our method is robust against the model orientation. The performance of the proposed

method is compared with the commonly used methods implemented with CPU. We also generalize the method

to process the non-manifold meshes. The algorithm presents a great enhancement in terms of processing time

when compared to the CPU, especially in large scale 3d meshes.

Contribution
 We propose in this paper a parallel method for partition large-scale 3D meshes into a set of disjointed

sub-parts. Each part will be parallelized and displayed by the group of kernels. In addition, GPU distributes

those sub-parts over kernels (a set of threads). The distribution of these sub-parts over those kernels enhances

the display and the visualization of the object. Those sub-parts near to be balanced in size. This step minimizes

the workload over the stream-processors of GPU that means the load balancing problem is considered. The

common and most suitable method is the SDF. This method is consistence mesh partitioning. SDF is a volume-

based 3D mesh function that can manipulate features of a shape, which have similarities by using the consistent

method. This method also can be used in skeletonization “skeleton extraction” and 3D mesh partitioning. The

SDF is a scalar function described on the surface of a mesh, which created from the multi-rays that sent from all

input points on the mesh, to measure the distance of the intersection point. Such beam/ray infusion is a deeply

parallel mechanism. This task is absolutely ineffective if the processing was on the CPU. Therefore, in the

proposed approach, instead of sending a single ray at a time, a parallel method for computing SDF that is

implemented on GPU using MATLAB and Mex C++ utilizing the independence of the beams. GPU properties

play the main role in the partitioning performance. Our implementation shows the speed difference between

CPU and GPU of mesh partitioning, especially in large-scale points of mesh. We test it with several benchmarks

and evaluate the performance on NVIDIA GeForce 710M GPU. In practice, GPU-based partitioning algorithm

operates extremely rapidly than the traditional one "sequential algorithm on CPU".

 The paper is organized as follows. Section II addresses a brief survey of previous works, this section

consists of three subsections, subsection II-A shows the difference between CPU and GPU mesh operations,

while is subsection II-B explains shortly mesh partitioning types, furthermore in third subsection II-C shows

the power and improvement of the GPU. Our motivation and proposed method are presented in Section III,

beside the implementation and the performance. Section IV discussed and explained our experimental results.

Finally, Section V analyze our approach and additional future works.

II. Related works
 3D Mesh partitioning is a fundamental issue in several mesh operations like modeling [10], shape

compression[1], simplification[8], texture mapping[21], skeleton extraction[20], and metamorphosis [12], [43].

Mesh partitioning used as pre-processing step to improve and enhance the final output in many computer

graphic problems [18], [41]. As well as used directly in sub-parts labeling [17].One of the most traditional and

famous methods which are used for 3d mesh partitioning is The SDF [36]. One of the latest methods that used

the SDF for creating closed visible region is called CVF (Continuous Visible Features) [23]. The objective for

using the SDF in this method is to reduce the traversal of neighboring points (vertices) on the boundaries in the

shape that represents the input mesh.

2.1. CPU VS. GPU PARTITIONING

 In the next two subsections, we will focus on the two different partitioning viewpoints. The first is the

approaches that depend on the visibility scope for 3d mesh decomposition. The other is the different operations

on a mesh based on GPU.

Closed Continuous Visible Domain Partitioning of 3D Meshes

20

1. Mesh partitioning based on visibility points: Analysis and partitioning of the 3D shape provide computer

graphics and computational geometry with a fundamental data about the spatial data of the object. The

mesh partitioning is the process of dividing a shape into many sub-parts. Each part stands alone as disjoint

part. This part work as a new object. Almost points in each part are visible to each other whether direct or

indirect. The visibility process creates a visible part. Additionally, this process distinguished between the

points which lie on the inner, the outer, and the boundaries of a shape. The visibility process works as a

filter the previous case. Many modern works use this visibility scope to determine the shape and its parts

features and attributes. The visibility and the functionally "meaningful parts" is the intuition behind of these

visually-based characteristics, Here we will discuss different applications based on the visible region.

Firstly, The Shape Diameter Function (SDF) [36] is identified by sampling rays in the cone in the anti-

normal direction of a side. The aim of this step to obtain the thickness of a shape locally within the visible

points. The value of SDF is measured be the sum of the projected distance of the rays inside the model.

However, the SDF may not be matched well to visually semantic components if the thickness is not exactly

distributed, as the semantic component should have the similar thickness anywhere.

Figure 2) SDF: chair with differ features

 For example “Fig. 2”, the chair has completely different feature values at its middle from those on the

boundary. In addition, the feature values at the ends of the leg are also completely different from those closer to

the chair. Another visible region based on feature is, Volumetric Shape Image (VSI) [25], the motive of

capturing the general instead of the local volumetric context of the local cone used for sampling rays, VSI

attempted to sample rays in multiple directions. For computing, the VSI feature firstly determining the agent

middle for all vertices and then testing ray at fixed direction. The range of VSI is obtained by comparing the

difference between the sampling of a source vertex and other vertices on the mesh. Extra visible region method

based on feature is Continuous Visibility Feature (CVF) [23] there are two points x and y inside the volume of a

shape. Those points are visible to each other if there exists a geodesic path π connecting x and y. That means x

and y are continuously visible to each other (strong visibility). But, in weak visibility, a point is visible and not

by the other point (example, point x can see point y, while y can’t see x). By using strong visible or weak visible

the results directly affected. All previous methods are implemented by the traditional way on the CPU (Serial

programming). The performance changed definitely when those method implemented on GPU. The time which

the system memory and CPU shared time applications, change the exact performance time. While the dedicated

memory of GPU gets the real-time execution. So, the new trend in many computer graphics and many

computational geometry problems are using GPU as a platform for solving those problems. Nowadays, NVIDIA

Company provides many types of GPU, according to the application applied and the utilization. In last years,

there are many methods used GPU to improve the performance and enhance the final results.

2. Mesh partitioning types: All GPU architectures can help to solve different computer graphics problems.

The goodness and the quality of those results which applied on GPU is better than those done over the CPU,

whether this problem is small or large. Both tiny and very complex problem not considered. Here, the

discussion about the problems which applied on GPU. Many mesh operation use GPU to increase and

enhance both the performance and the output. When the parallel computing applied on the mesh operations,

it minimize the time performance and increase the visualization output. In [41] mesh decompression based

GPU, the prime step is to partition the shape by Edge breaker [34], then decompression the results of

patches over the threads of GPU. The major advantage of partitioning step is reducing the replicated

vertices among patches, and balancing the numbers of faces of the results patches. While the results of

patches need post-processing step to refinement the boundaries between the faces. The extra process done

because the results are jagged boundaries needed to be swapped to fix jagged boundaries. Other mesh based

Closed Continuous Visible Domain Partitioning of 3D Meshes

21

GPU is to recognize the objects within an image, it is a primary operation in labeling objects [18]. The

connected component labeling (CCL) is the most commonly used approach to this issue. Although CCL is

not easy to be implemented in a parallel way as the joined pixels can be only located primarily by graph

traversal. The CCL GPU-based algorithm is a good platform for fast object identification in large-scale

images. Otherwise, those mesh operations are applied on CPU or GPU. The mesh partitioning is a common

mesh operation. This process known also as mesh partitioning or segmentation. Mesh partitioning divided

into two main types, which different methods and procedures can be used. While in [3] presents two

approaches for the computation of the SDF on the GPU are described and compared. (The SDF is a scalar

function describing the local thickness of an object. SDF can be used for consistent mesh partitioning and

skeletonization). In the first approach is facilitating reorganized the tracing of the rays to be completely

adapted for the rasterization hardware. The second approach utilizes parallel ray casting and an octree

traversal by using OpenCL.

2.2 MESH PARTITIONING TYPES

Figure 3: 3D volumetric vs 2D surface partitioning

 Here, we should refer to that we have two differ types of partitioning. The first class is Part Type

partitioning, while the other is Surface Type partitioning “Fig.3”. The major variation among the two classes has

relied on a separate detail and the view that the object being partitioned, both a 2D surface and a 3D volumetric

representation. We will concentrate on the first class. This type utilized in studying of humanitarian

understanding. Testing human image perception several attempts mean that perception and shape recognition

are based on structure mesh partitioning the shape into smaller components or sub-parts[15], [4], [14]. Because

of this purpose, part type partitioning segments a 3D mesh to separate parts that oftentimes matched to the

bodily 3D semantic components of an object. New comparable studies on the outcomes of some region type

mesh decomposition procedures can be located in [2]. While in [28] and [29], region type decomposition is

generated relied on investigating the junction curves/sweeps of the ball concentrated nearly all vertices. The

investigation partitions a shape into related parts that are either body’s parts or extended characteristics, like

protrusion characteristics. Part type partitioning was useful in modeling by collecting the object’s parts to

inspire modern layout [10]. As well, utilized for generating toys as in [32]. Segmenting, recognizing and

matching object parts can serve shape identifying and retrieval, and shape restoration [44], [30], and [31]. This

part identification can be utilized in morphing [37].Lastly, segmenting object into parts has also assisted in

skeleton creation[20], [38], [27], which was utilized in object deformations as well as object animation. Both 3D

volume and 2D surface type not easy or difficult to be implemented in any computer environment. This

environment affects the performance and the goodness of the results. Both height performance and a good result

provide GPU environment. GPU considered by many computer graphics researchers the suitable environment

for achieving various tasks related to those types.

2.3 HEIGHT PERFORMANCE AND PARALLEL COMPUTING USING GPU

 Recent GPU provides the highest-throughput for computer graphic processors, which have a technical

peak rendering of a few Tera-Flops. The generality of these GPUs work on the SIMD (single-instruction

multiple data) foundation and the producers are executed concurrently by performing a large-scale number of

threads. On the broad, GPU consist of multi processors (MPs), each of them has a number of streaming

processors (SPs) and a small shared memory system. For example, in our implementation run on NVIDIA

GeForce 710M GPU (Architecture Fermi with code name GF117-N14M-GL). This GPU has 2 Multiprocessor

(MPs), each MP contains 96 CUDA cores (Compute Unified Device Architecture) or streaming multiprocessors

(SMs) and each CUDA core can run 48 threads. The power of GPUs scales is linearly with the number of cores.

To completely utilization of the computational capabilities of the recent GPUs, a good work decomposition

Closed Continuous Visible Domain Partitioning of 3D Meshes

22

scheme needs to be designed. GPU methods have been universally used for differ mesh operations acceleration,

and this paper proposed the new method for decomposing the large-scale 3D mesh. To investigate the utilization

of GPU in the geometrical processing purpose.

III. Partitioning large-scale 3d meshes
 Recently, several computer graphics problems solved by using GPU platform in order to increase the

effectiveness of the final results. Many computer graphics problems can be decomposed into disjointed sub-

problems to get solved efficiently, especially large-scale problems and mesh partitioning problems. In most of

those problems, GPU is the best candidate environment that can be rapidly used. Now, many mesh operations

and GPU platform are considered a linked issue. Mesh partitioning is a common operation that helps and

simplify many mesh analysis problems to be manipulated. Partitioning a large-scale 3D mesh based on the GPU

is an integrated problem, decomposing is the problem and GPU is the environment which used as a solution

platform.

3.1 Motivations of the paper

 Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of

millions of polygons. One problem with 3D scanners, however, is handling the large amounts of data they

produce. In fact, traditional algorithms for display, simplification, and progressive transmission of meshes are

impractical for data sets of this large-scale size. Therefore a partitioning of this kind of 3D meshes should be

performed. In addition, storing and displaying a collection of large-scale meshes is not suitable for traditional

system memory. Therefore, the world last year’s offers and suffers in many fields from the big data spatially in

computer graphic. Computer graphics have many problems that in need to be treated and solved. Whereas the

computer main memory which occupied by running OS and many applications concurrently. Although the

system memory function is very significant, its capacity is limited. As well as, the finite numbers of cores. In

order to the limitation of the memory and cores of CPUs and the large-scale size of 3D models that computer

graphics used, the partitioning of many large 3D models still necessarily to be handled in the non-arbitrary

algorithm. Our algorithm partitioning a large scale 3D meshes into many sub-parts, which will meet the multi-

thread architecture of GPUs. Then we want to get the result of partitioning contains fewer replicate vertices. As

well as, we should to made each sub-part had a balanced number of faces, that led to the partitioning speed will

be optimized. Generally, in the last years, the trend toward using GPUs for general computations can be

observed. The breakthrough for these approaches came with the introduction of large data set processing. “Fig.

4” shows the great difference between the architecture of CPU and GPU in amount of memory and the number

of cores located.

Figure 4) CPU vs. GPU Cores

 While “Fig. 5” explains the difference between Fermi vs. Kepler GPU technology. If you have a

GeForce 710M graphic card with 2GB of graphic memory, for example, that memory is fully separate from your

computer’s 8 GB of system memory. Dedicated cards are a perfect way if we are going to professional tasks of a

large-scale computer graphic issues.

Closed Continuous Visible Domain Partitioning of 3D Meshes

23

Figure 5) Fermi Vs Kepler architectures

3.2 The Proposed method

 Given an input volumetric mesh , we use the following abbreviation: the set of n verities {v1; v2;…;

vn}, the positive domain of the shape (inside the volume of a shape) D meaning that “ positive domain D is the

volume of a shape but not seen by any visible vertex v of a triangle ∆T, the continuous visible triangle ∆T that

contains the visible vertex v, the set of visible triangles T that contain the set of visible verities and finally the

closed continuous visible domain CCVD. The overview of the proposed method is summarized as follows:

Filter the faces: The core of this step is to ensure the outside continuous visible area of a vertex v1, then find the

set of continuous visible triangles crossbreeding to the visible vertices from positive continuous domain.

After that and recursively, getting the boundaries between the positive area of a shape and the continuous

visible triangles of a visible vertex. The intention of this step to get the interior edges of a shape by applying the

geodesic distance manner.

- If ∆T and v1 of tetrahedron of the positive volume of a shape, then T is a positive triangle

- Continuous positive domain D of a vertex v1 is a set of positive triangles T that directly connected to this

vertex

- Clearly that, a set of vertices vs is continuous visible area must be a subset of triangles Tv

- Constructing Tv

Finding the boundaries between contentious positive domain of a vertex v and continuous visible triangle

Tv (recursively):

- Searching for a vertex v2 that adjacent to Tv1 and directly connecting to the vertex v1,

where v2 Tv1

- This process done iteratively, by searching and connecting two disjointed verities v2 and v3

 (where v2 and v3 are adjacent to Tv2, v3 ∆Tv2).

- By constructing the similarity matrix which each entry’s value to be 1 for visibility and 0 for invisible.

Basically, there exist a geodesic path π connecting v1 and v2 and π must be cross a boundary at least between

CCVD v1 and Tv1

- A geodesic path π connecting v0 and v1 and π must be cross a boundary at least between CCVD v1 and Tv0

- Now, we will search for the third vertex v3 that closest to π and v1 that invisible to v1.The next vertex v4 be

the far and last visible on π.The π geodesic path may not be the shortest path between tow disjoint vertices.

 ∃π such that ∀π1∈π, vπ1∩m=∅,

where π is a geodesic path that connecting two vertices on mesh m.

- Further, v4 is continuous visible vertex, and edge e = {v4; v3} that connecting v4 and v3 must by boundary

edge. After that, we will finding all boundaries as we get the first edge e. This process is done firstly by

identifying the visibility of the third vertex v3 of the ∆t that adjacent to e. By moving on the boundaries

edges e1 ≠ e of ∆t. [see Table I]

Table I) Weak visibility vs strong visibility
Points classify Visibility Domain

Strong Each points v and u is visible to each other

Weak A point v can be visible by point u while the point u can’t see point v

- The last vertices also are pair of a visible and invisible. Note that, the closed loop eliminate the vertices that

not continuous visible by Tv1

Closed Continuous Visible Domain Partitioning of 3D Meshes

24

Algorithm 1: Closed Continuous Visible Domain (CCVD)

Data: 3D models
Result: 3D mesh partitioning

Repeat // Host procedure

 Face where direct seen by is , and visibility region unallocated Do

 Find a next vertex

 Find a geodesic path , which connecting and

 is direct see

 and are in the same part

 Set is the first edge

 visible by , while isn’t visible by

 Repeat // Kernel procedure

 Let by be a vertex can be seen by and

 If can be seen by then

 Else

 End
 End

 List

 Until List is closed loop

 vertices that direct close connected to without intersection // Device procedure

 List has been invisible from

Until all are partitioned

 The steps which is shown in “Fig.6” explains the 3D mesh partitioning optimization diagram. Firstly, a

model 3d mesh represented (.OFF file or other suitable format) as input mesh. Then get the triangulation of the

input model. Third step is responsible for eliminating the replicated vertices by minimizing the traversal vertices

or points this step known as mesh simplification or optimization, as we see in “Fig. 7”. The fourth step is a

recursive step for partitioning the neighboring points, facets, and vertices according to the visibility term. If all

points are get partitioned, we get the adaptive sub-parts. Notice that in [Table I] shows the difference between

two visibility points. The strong visibility is better than the weak one, as Ɐ Points Pi ∈ Region Ri are visible to

each other. This meaning that final results are semantic components. Now we will show the step that run on

GPU to increase the performance of the proposed method

Closed Continuous Visible Domain Partitioning of 3D Meshes

25

3.3 Implementation
 In this section, we will describe our implementation for partitioning large-scale 3d meshes on GPU,

and the performance of our algorithm on various benchmarks. We use MATLAB R2015a (64-Bit) for the core

assignment and Microsoft Visual C++ to enable C-MEX for compile C++ code in MATLAB for partitioning

and parallel processes. MATLAB Executable (MEX) is designed to support using C++ codes inside the

MATLAB IDE to perform rapidly executing and avoid many application bottlenecks. We call C-MEX for

executing C++ codes. We work on CUDA toolkit 7.5 as the development environment for GPU, and also using

NVIDIA Visual Profiler to estimate the kernel performance time, the data input and output time among GPU

and the system or host memory.

We wrote our implementation c-Mex files for several goals:

1. Reusing C++ functions inside MATLAB.

2. Increasing the speed.

3. For unlimited custom extensions

 The sequential version of partitioning runs on the machine with the properties that shown in [Table II]

Partitioning the mesh into meaningful parts is a basic step toward many mesh operations. The familiar operation

is the semantic part-based shape analysis. The SDF is the good method which was used in a shape analysis. This

method was implemented in CGAL [9], [5]. In the proposed method had modified CGAL implementation by

replacing CCVD instead of The SDF. The real SDF consists of two steps, first is GMM (Gaussian Mixture

Model) [39] the distribution of the feature values. The final step is to partitioning a shape by applying the k-way

graph cut. The first one run in CPU, then switching to GPU to achieve the second step. Here, we have two main

factors the speed and time which only GPU that can get better performance rather than CPU.

Table II) Machine and graphic card properties

Processor Inter(R) Core i5-4200M CPU @ 2.50 GHz

RAM 4.00 GB system memory

CPU NVIDIA Series 710M (dedicated memory 2GB DDR3) - Fermi type

OS 64-bits OS , 64x based Processor

 In the previous section we had explained the proposed algorithm. Here, we will clarify GPU

performance. GPUs allow manipulation of 3D dimensions faster than CPU. GPUs’ memory bandwidth

sometimes greater than CPUs memory. Therefore, GPUs appear to be well suitable to accelerate all operations

that operate on 3D large scale volumetric data set in independently way; e.g., for transformations, filtering,

aggregation, partitioning or other “Big Data” as Fig. 8.

Closed Continuous Visible Domain Partitioning of 3D Meshes

26

3.4 Performance

 The proposed method is implemented in CUDA structure, NVIDIA GeForce 710M GPU which runs

(65535*65535* 64) threads concurrently in the system. In addition, the NVIDIA GeForce710M GPU has 2

streaming multiprocessors (SM), each SM contains 96 CUDA cores and each CUDA core can run 48 threads, so

the peak thread of 710M is 9216. For the memory latency and limited capacity of graphics memory, the real

power in maximum cases extremely lower than 9216. The machine and the NVIDIA card properties are shown

in [Table II]. The machine properties play sub-role in our method, because the provided graphic card is Fermi

type. There is a short time shared in the system memory. Using a high-performance computing environment will

improve the execution time of the partitioning algorithm which works on processing large-scale data. A high-

performance computing environment executes the parallel algorithms of the mesh partitioning on a distributed

environment. A distributed environment can be applied using GPU (Graphics Processing Unit) [18].

 The performance of both CUP and GPU is near to be equal in small or simple models. But, there is

exist a great Difference between them when we applied the procedure on huge complex models. Although,

many benchmarks avoid the complex and tiny models from the comparison. Hence, parallel implementation of

CCVD algorithm have been very successful especially in large or huge scale. By using the models from the

Princeton Segmentation Benchmark [7]. Our implementation run over machine with the following properties.

Both replicated vertices and running time had been minimized.

- Acceleration of mesh partitioning

 Our proposal method principally focuses on the speed of partitioning large-scale mesh. The method

implemented on computing environments with commodity CPUs and GPUs. The experimental results were

collected from the tests on a system with i5-4200M CPU 2.50 GHz CPU and GeForce 710M GPU “Fermi”.

o System memory vs dedicated memory: Shared system memory indicates sharing of the system local

memory with the on-board graphics chip. While in dedicated VRAM means applications using memory for

all graphics purposes (like rendering, visualization, morphing, and partitioning) will use only the memory

on the discrete graphics card thus drastically improving the performance.

o CPU-based CCVD vs GPU-based CCVD: The proposed algorithm tested on both CPU and GPU. For

comparing the performance of both processors. Clearly, the running time which required by CPU-based

CCVD is greater than GPU-based CCVD. “Fig. 9” shows that when the processed model is about 4k

vertices the running time is near to be the same, as the models (Glass, Plier, and fish). While, when models

are greater than 6k vertices the running time is changed, as the models (Ant, Armadillo, and Fourlegs).

o

Figure 9) the proposed method performance on both CPU and GPU

IV. Experimental results
 The recent improvement in the power of graphics processing units (GPUs) has overturned us to a viable

platform for many computer graphic applications. We had given an overview of the traditional partitioning

techniques in [26]. In this paper, we will focus on leveraging the power of GPUs in order to obtain high-

performance partitioning of a large-scale 3D mesh. The proposed method is the interactive process, with the

premise that these algorithms will lead to faster and higher-quality in 3D mesh analysis problems in the near

future. Subsection 33.3 shows the computer environments that we used. In order to verify the efficiency of our

method, we compared the performance of our method with the most commonly used method. SDF is the

Closed Continuous Visible Domain Partitioning of 3D Meshes

27

frequently method which used for mesh partitioning in CGAL computational geometry library. We run the

proposed method which is called CCVD over both CPU and GPU. There is a variation in execution time

especially in large-scale mesh the reference method was proposed in [36] and implemented with CGAL

libraries. We will see in “Fig. 10” there exist 8 parts by using CCVD, while 23 parts for the same model. Which

led to more times, storage space and other CPU resources.

 While in Fig.1 the Armadillo model in different orientation, the number of segments extremely not

changed. That means CCVD is robust to the orientation of the model. For extra results, “Fig. 10” Comparing

two different methods for mesh partitioning is the factor that shows quality and performance for each them.

William Rand [33] and Hubert [16] proposed a correlation function that modified an issue of comparing two

distinct partitions methods with the probable change number of categories into an issue of computing pairwise

label similarities

Table III: Compare RI score between CCVD and SDF

Model CCVD SDF Diff

Human 0.14 0.18 0.04

Cup 0.37 0.36 -0.01

Airplane 0.15 0.09 -0.06

Teddy 0.07 0.06 -0.01

Octopus 0.04 0.05 0.01

Plier 0.28 0.38 0.1

Table 0.12 0.18 0.06

Armadillo 0.08 0.09 0.01

Vase 0.16 0.24 0.08

Fourlegs 0.15 0.16 0.01

Ant 0.04 0.02 -0.02

Chair 0.1 0.11 0.01

Hand 0.13 0.2 0.07

Fish 0.19 0.25 0.06

Bird 0.11 0.12 0.01

Average 0.142 0.166 0.024

 The evaluation measured by Rand Index (RI) metric [33], [16]. The RI scores of CCVD and SDF are

shown in the [Table III], those values show the improvement that occurs on SDF significantly in the table which

has 13926 vertices (from 0.38 to 0.28) and also Plier which has 4487 vertices (from 0.18 to 0.12). Our proposed

method improves other categories RI values, with the exception of the airplane and the hand. Generally, we

notice from fifteen models the CCVD method CCVD get better RI values than SDF. Notice that the small RI

value indicates powerful similarity to the human-made partitioning. Furthermore, “Fig.11” shows the

improvement of CCVD results compared to SDF.

Note that:

- The results is consistent, there is no need for post-processing process as in the other methods.

- Many methods are in need for post-processing process like smooth, over lapping, shifting, refinement, and

treat boundaries, while our proposed method robustness.

Limitation

 Limitation of CCVD, the set of the vertices and points separating the wings and airplane body can

directly continuously see both the wing and body. The output in large-scale values can create the partitioning

Closed Continuous Visible Domain Partitioning of 3D Meshes

28

cuts to be in the center of the wings (plane or bird) model. This red domain may cause poor partitioning “Fig.

12”.

ANALYSIS

 Our proposed approach maps well to recent GPUs, we evaluated the GPU performance and received

high acceleration rate. The benefits and the power of our method are:

- Mapping the partitioning process to GPU architecture, keeping all patches are topologically equivalent to a

disk,

- Robust to the model orientations

- Load-balanced between the patches

- Completely use the parallelism technique on commodity GPU.

- The performance scales nearly be linear with the number of sub-parts.

- The input/output data time from GPU to host memory is approximately small compared with the whole

time for partitioning the large 3D models.

- The final results is consistent mesh partitioning

- Real time execution on commodity GPU

- Tiny “very small” and very complex models are not considered in our implementation

- Accuracy, visualization

- Parallel mechanism (GPU) run more faster than sequential represented methods (CPU)

Closed Continuous Visible Domain Partitioning of 3D Meshes

29

V. Conclusion and future works
We presented a new method for a parallel partitioning large-scale 3d meshes joined on GPU kernels.

Which requires fewer boundary points/vertices repetition and balanced faces/points number for each part. Our

approach is flexible and the partitioning procedure maps well to commodity GPUs. In practice, our method

improves the performance of mesh partitioning on current GPU architectures. We observed that the proposed

method runs extremely faster than the traditional CPU-based partitioning algorithms, especially in large-scale

“Fig. 9”. In 3D volumetric partitioning is a fundamental part of different mesh analysis issues, and although

many mesh operations had been developed, 3d mesh partitioning is still often done by the traditional way on

CPU. Unfortunately, this is a very time-consuming and tedious process. A very hopeful method to trying this

problem and generation the partitioning in an interactive way.

In this paper, we present an efficient GPU implementation of partitioning large scale of 3D meshes,

was proposed. The method exploits the high performance partitioning based on GPUs to improve the

performance of large-scale data. The experimental results show that the proposed method can be a good solution

to the mesh partition in large-scale data. There are several avenues for future and later work. We would like to

perform the partitioning step faster. We would consider improvement that can get both meaningfulness and

balance in the partitioning. What is extra, we can spread our partitioning approach to accelerate other mesh

operation and analysis methods. The recent commodity GPU plays the significance role in almost of those steps.

As the NVIDIA Company offer four types of GPU. The proposed method are implemented and testes under

Fermi type. While the other three types (Kepler, Maxwell, and Pascal) get different results. Next days, a new

technology is introduced, seldom the old one had been much cheaper cost and therefore continues to be a good

price/performer as there is no limit of the life. The power of human-brain and imagination have no ends see

“Fig. 5".

References
[1]. Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical mesh segmentation based on fitting primitives. The Visual

Computer, 22(3):181–193, 2006.
[2]. Marco Attene, Sagi Katz, Michela Mortara, Giuseppe Patané, Michela Spagnuolo, and Ayellet Tal. Mesh segmentation-a

comparative study. In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference on, pages 14–25. IEEE,

2006.
[3]. Andrea Baldacci, Rastislav Kamenick`y, Adam Rieˇcick`y, Paolo Cignoni, Roman ˇ Durikoviˇc, Roberto Scopigno, and Martin

Madaras. Gpu-based approaches for shape diameter function computation and its applications focused on skeleton extraction.

Computers & Graphics, 59:151–159, 2016.

[4]. Irving Biederman. Recognition-by-components: a theory of human image understanding. Psychological review, 94(2):115–147,

1987.

[5]. Jean-Daniel Boissonnat, Olivier Devillers, Monique Teillaud, and Mariette Yvinec. Triangulations in cgal. In Proceedings of the
sixteenth annual symposium on Computational geometry, pages 11–18. ACM, 2000.

[6]. Bernard M Chazelle. Convex decompositions of polyhedra. In Proceedings of the thirteenth annual ACM symposium on Theory of

[7]. Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. A benchmark for 3d mesh segmentation. In Acm transactions on
graphics (tog), volume 28, page 73. ACM, 2009.

[8]. David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation. ACM Transactions on Graphics

(TOG), 23(3):905–914, 2004.
[9]. Andreas Fabri, Geert-Jan Giezmann, Lutz Kettner, et al. On the design of cgal the computational geometry algorithms library. 1998.

[10]. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David

Dobkin. Modeling by example. ACM Transactions on Graphics (TOG), 23(3):652–663, 2004.
[11]. Michael Garland, Andrew Willmott, and Paul S Heckbert. Hierarchical face clustering on polygonal surfaces. In Proceedings of the

2001 symposium on Interactive 3D graphics, pages 49–58. ACM, 2001.

[12]. Arthur Gregory, Andrei State, Ming C Lin, Dinesh Manocha, and Mark A Livingston. Interactive surface decomposition for
polyhedral morphing. The Visual Computer, 15(9):453–470, 1999.

[13]. Sumanta Guha. 3d mesh segmentation using local geometry. International Journal of Computer Graphics & Animation, 5(2):37,

2015.
[14]. Donald D Hoffman and Whitman A Richards. Parts of recognition. Cognition, 18(1):65–96, 1984.

[15]. Donald D Hoffman and Manish Singh. Salience of visual parts.Cognition, 63(1):29–78, 1997.

[16]. Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2(1):193–218, 1985.
[17]. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3d mesh segmentation and labeling. ACM Transactions on

Graphics (TOG), 29(4):102, 2010.

[18]. Young-Min Kang. A parallel approach to object identification in largescale images. In The Second International Conference on
Electronics and Software Science(ICESS2016), Japan 2016, 2016.

[19]. Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation using feature point and core extraction. The Visual Computer,
21(8-10):649– 658, 2005.

[20]. Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts, volume 22. ACM, 2003.

[21]. Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares conformal maps for automatic texture atlas
generation. ACM Transactions on Graphics (TOG), 21(3):362–371, 2002.

[22]. Xuetao Li, Tong Wing Woon, Tiow Seng Tan, and Zhiyong Huang. Decomposing polygon meshes for interactive applications. In

Proceedings of the 2001 symposium on Interactive 3D graphics, pages 35–42. ACM, 2001.
[23]. Guilin Liu, Yotam Gingold, and Jyh-Ming Lien. Continuous visibility feature. In 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1182–1190. IEEE, 2015.

[24]. Rong Liu and Hao Zhang. Segmentation of 3d meshes through spectral clustering. In Computer Graphics and Applications, 2004.
PG 2004.Proceedings. 12th Pacific Conference on, pages 298–305. IEEE, 2004.

Closed Continuous Visible Domain Partitioning of 3D Meshes

30

[25]. Rong Liu, Hao Zhang, Ariel Shamir, and Daniel Cohen-Or. A partaware surface metric for shape analysis. In Computer Graphics

Forum, volume 28, pages 397–406. Wiley Online Library, 2009. computing, pages 70–79. ACM, 1981A
[26]. Mohamed MOUSA Medhat Rashad, Mohamed Khamiss. A review on mesh segmentation techniques. ijeit, 6:18–26, February

2017.

[27]. Michela Mortara, Giuseppe Patané, and Michela Spagnuolo. From geometric to semantic human body models. Computers &
Graphics, 30(2):185–196, 2006.

[28]. Michela Mortara, Giuseppe Patané, Michela Spagnuolo, Bianca Falcidieno, and Jarek Rossignac. Blowing bubbles for multi-scale

analysis and decomposition of triangle meshes. Algorithmica, 38(1):227–248, 2004.
[29]. Michela Mortara, Giuseppe Patané, Michela Spagnuolo, Bianca Falcidieno, and Jarek Rossignac. Plumber: a method for a multi-

scale decomposition of 3d shapes into tubular primitives and bodies. In Proceedings of the ninth ACM symposium on Solid

modeling and applications, pages 339–344. Eurographics Association, 2004.
[30]. David Lon Page, Mongi A Abidi, Andreas Koschan, and Yan Zhang. Object representation using the minima rule and superquadrics

for under vehicle inspection. In Proceedings of the 1st IEEE Latin American Conference on Robotics and Automation, pages 91–97,

2003.
[31]. Sylvain Petitjean. A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys (CSUR), 34(2):211–

262, 2002.

[32]. Roni Raab, Craig Gotsman, and Alla Sheffer. Virtual woodwork: Making toys from geometric models. International Journal of
Shape Modeling, 10(01):1–29, 2004.

[33]. William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association,

66(336):846–850, 1971.
[34]. Jarek Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE transactions on visualization and computer

graphics, 5(1):47–61, 1999.

[35]. Pedro V Sander, John Snyder, Steven J Gortler, and Hugues Hoppe. Texture mapping progressive meshes. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques, pages 409–416. ACM, 2001.

[36]. Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh partitioning and skeletonisation using the shape diameter

function. The Visual Computer, 24(4):249–259, 2008.
[37]. Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of polyhedral surfaces using decomposition. In Computer Graphics

Forum, volume 21, pages 219–228. Wiley Online Library, 2002.

[38]. Fu-Che Wu, Wan-Chun Ma, Rung-Huei Liang, Bing-Yu Chen, and Ming Ouhyoung. Domain connected graph: the skeleton of a
closed 3d shape for animation. The Visual Computer, 22(2):117–135, 2006.

[39]. Guorong Xuan, Wei Zhang, and Peiqi Chai. Em algorithms of Gaussian mixture model and hidden markov model. In Image

Processing, 2001. Proceedings. 2001 International Conference on, volume 1, pages 145– 148. IEEE, 2001.
[40]. Jie-Yi Zhao, Min Tang, and Ruo-Feng Tong. Connectivity-based segmentation for gpu-accelerated mesh decompression. Journal of

Computer Science and Technology, 27(6):1110, 2012.

[41]. Jieyi Zhao, Min Tang, and Ruofeng Tong. Mesh segmentation for parallel decompression on gpu. In Computational Visual Media,
pages 83–90. Springer, 2012.

[42]. Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. Isocharts: stretch-driven mesh parameterization using spectral
analysis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 45–54. ACM,

2004.

[43]. Malte Zöckler, Detlev Stalling, and Hans-Christian Hege. Fast and intuitive generation of geometric shape transitions. The Visual
Computer, 16(5):241–253, 2000.

[44]. Emanoil Zuckerberger, Ayellet Tal, and Shymon Shlafman. Polyhedral surface decomposition with applications. Computers &

Graphics, 26(5):733–743, 2002.

Medhat Rashad ." Closed Continuous Visible Domain Partitioning Of 3D Meshes” Research

Inventy: International Journal of Engineering And Science, vol. 08, no. 02, 2018, pp. 18–30.

