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Abstract: The large current development of aerospace and automotive technologies is based on the use of 

composite materials which provide significant weight savings compared to their mechanical characteristics. 

Correct dimensioning of composite structures requires a thorough knowledge of their behavior in small as in 

large deflection.This work aims to simulate linear and nonlinear behavior of laminates composites under three-

point bending test. The used modelization is based on first-order shear deformation theory (FSDT), classical 

plate theory (CPT) and Von-Karman’s equations for large deflection. A differential equation of Riccati, 

describing the variation of the deflection depending on the load, was obtained. Hence, the results deduced show 

a good correlation with experimental curves. 

Keywords: linear behavior ; nonlinear behavior ; laminate; Graphite epoxy; laminated beam; Three-point 

bending; Geometric nonlinearity ; failure ; macroscopic curve. 

 

I. Introduction 

Today, the Composites materials are used practically in all industries and still undergoing strong 

expansion rate. They are the source of large challenges in various high technology achievements. But the 

continuation of the development of their use in structures requires to establish the necessary tools for modeling 

their mechanical behavior and their dimensioning at failure. These models are validated with the results 

obtained by experimental testing. The biaxial testing is the ideal test to validate the macroscopic behavior of 

composite structures. However, this type of test is not often used, it is difficult to achieve and very expensive. 

Thus, an alternative to biaxial testing is given by the bending tests, which help to follow the damage progression 

of specimen to the final failure for some configurations. Many authors such as Gustavo [1], Xiwen [2] and 

Moreno [3] were interested in this test. In our case, we use the experimental results developed by Echaabi [4] 

with observed various behaviors by varying the distance between the supports and the geometrical dimensions 

of the specimens (Fig 3).  

The nonlinearity depends on the thickness ratio L/h, the orthotropy, boundary conditions and the 

number of laminate layers. A small ratio L/h leads to a linear behavior and the specimens with a large ratio 

present nonlinear responses. Our study is limited only to the thickness ratio l/h (Fig 3) [7]. 

Irhirane [5, 26] used two formulations an analytical method with transverse shearing and finite element 

method. The first-order shear deformation theory (FSDT), which takes into account the transverse shearing 

strain and the correction of coefficients, remains the best approach to characterize and simulate analytically the 

macroscopic curves of failure and the sequences of failure for test specimens A and D (Table.1 and Fig 4). On 

the other hand, the use of the finite element method significantly improves the results on the level of the 

breaking loads and the flexural stiffness [5]. Indeed, the results of Irhirane work permit to obtain a good 

correlation with experimental curves only in the linear behavior. A nonlinear behavior observed in other 

specimens, has not been studied and still difficult to resolve. In this respect, our work is focused on modeling 

the behavior of specimens with a nonlinear response.  

In the literature, there are many theories for modeling the nonlinear behavior of laminated composite. 

These theories can be divided into three main categories [8]: The Equivalent Single Layer (ESL), Layer-Wise 

(LW) [9] and Zig-Zag. [10] Three other theories are deduced from ESL: the classical plate theory (CPT), the 

first-order shear deformation theory which takes into account the transverse shearing strain (FSDT) and higher-

order shear deformation theories (HSDTs). Other simplified theories have been recently developed with less 

unknowns [11, 12]. Previous theories are usually used to analyze the elastic behavior of industrial structures. In 

our case, we used the classical plate theory, which has the advantage of using less unknowns and which 

describes with good accuracy the fields of stresses and strains in the laminated composite beams with a large 

thickness ratio L/h in three points bending [11].  

The Von-Karman’s large deflection theory leads to a good modeling of the nonlinear behavior of the 

laminated composite. This theory is used by many authors such as Padmanav Dash and B. N. Singh [7] JN 
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Reddy [15] Y.X. Zhang and K. S. Kim [6] and H. Nguyen-Van [14]. The introduction of this theory has allowed 

us to develop a differential equation of Riccati. The results are given in detail in this paper and also compared 

with experimental curves. 

 

II. Basic Formulations 
A typical laminated composite graphite/epoxy beam with n layers is shown in Fig. 1. 

 

 
Fig 1: graphite epoxy beam with N layers. 

 

The elastic mechanical behavior of a structure constituted of composite materials is generally modeled 

by the first-order shear deformation theory. The FSDT proposed by Reissner and Mindlin [8] accounts for shear 

deformation effects by the way of linear variation of in-plane displacements through the thickness. Since the 

FSDT violates the equilibrium conditions on the top and bottom surfaces of the plate, a shear correction factor is 

required to compensate for the difference between actual stress state and assumed constant stress state [8]: 
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Where u, v and w are displacements of the specimen in directions  x, y and z respectively.  

u
0
, v0 and w0 are displacements in plane of membrane and x and y rotations around axes x and y. 

The strain can be written as: 

   
















































x

v

y

u

y

v

x

u

         (2) 

Substituting Eq.(1) into (2). The strain field is given by the following relationship: 

   bm z          (3) 

with:  

The membrane strain field can be rewritten as: 
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The bending strain field is:  
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The transverse shear strain is given as: 
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The CPT model is based on the Kirchhoff–Love hypothesis that the straight lines remain straight and 

perpendicular to the midplane after deformation. These assumptions imply the vanishing of the shear and 

normal strains, and consequently, neglecting the shear and normal deformation effects [8]. This theory gives 

good result with fewer unknowns for a large thickness ratio l/h [11] see Fig N°2. 
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Fig 2: The classical plate theory (CPT) [18]. 

 

For large deformation analysis, the in-plane vector of Green strain at any point in a beam element is: 
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Substituting Eq. (7) into (8) and considering the Von Karman large deflection assumption, the strain can be 

written as: 

   zkm  **          (9) 

The membrane strain field  
*

m  can be rewritten as: 
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Where 
L*

m is the linear part and 
NL

m

* is nonlinear part of the membrane strain field: 
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The bending strain field is: 
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For laminated composite beams, the constitutive relationship can be expressed as [5] and [18-20]:  
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Aij (i, j = 1, 2, 6):  The in plane stiffness matrix. 

Dij (i, j = 1, 2, 6):  The bending stiffness matrix. 

Bij  (i, j = 1, 2, 6): The bending–extensional coupling stiffness. 

Fij (i, j = 4,5):  The transverse shear stiffness. 

Mx , My  et Mxy:  The resulting bending moment. 

Ny , Nx et Nxy:  The resulting membrane force. 

Qx et Qy:   The resulting transverse shear force. 

 

III. Application And Analysis 
In this study, the material used is an epoxy graphite laminate with a layer sequence of [[+45/-

45/90/0]3]s. Dimensions of the test specimen are given in Table 1. Its mechanical characteristics are: 

E11=116 GPa, E22= E33= 6.9 GPa, G12=5.6 GPa, G13=3.4 GPa, G23=2.5 GPa, ν12= ν13= ν23= 0.3,  

 

Table 1: The Geometrical characteristics of the specimen considered in mm. 
Specimen Length L Distance l between 

supports  

width b Thickness h Thickness ratio l/h 

A 75 57.5 25 3.6 16 
B 150 115.0 25 3.6 32 
C 150 136.5 25 3.6 38 

D 75 57.5 10 3.6 16 
E 150 115.0 10 3.6 32 

F 150 136.5 10 3.6 38 

 

 
Fig 3: Experimental setup [4]. 

 

The small thickness ratio l/h=16 for specimens A and D allows us to predict a linear behavior of the 

variation of the center deflection wc depending on the load P [7] (Fig N°4). The Modeling is based on a first 

degree scheme which takes into account the transverse shearing strain and the correction of coefficients. The 

center deflection is given by the following formulation [5, 26]. 
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𝑤𝑐   :  The center deflection. 

P :  The applied load. 

b :  The width of the specimen. 

𝐷11
∗  :  Element in reverse bending stiffness matrix.  

L :  The length of the specimen. 

𝐹55
∗  :   Element in reverse transverse shear stiffness matrix. 

 

 
Fig 4: variation of the center deflection wc according to the load P of the test specimen A 

 

Otherwise, the specimens E and F (with a relatively large ratio l/h=32 and l/h=38) allows us to predict a 

nonlinear behavior of the variation of the center deflection wc depending on the load P [7]. So, we start with the 

classical plate theory (CPT). 
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The strain field is given by the following equation: 
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For modeling of the nonlinear behavior, we introduce the Von Karman theory. The equation (16) becomes: 
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On the other hand, the constitutive relationship of a symmetrical laminated composite in bending can be 

expressed as: 
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Where the bending strain field are defined as: 
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In three points bending test, the strain field is defined as: 

   x

*

11

*

x MzD        (20) 

Where 𝐷11
∗  is an element in reverse bending stiffness matrix.  
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By (17) and ( 20) we deduce the variation of the deflection  according to moment: 
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Introducing the bending moment : xbMM  , knowing that : 
2

0  ,
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becomes: 
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With the following boundary conditions: 0
2
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Therefore the equation (22) becomes:  
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This is a differential equation of Riccati which has a solution according to the Cauchy-Lipschitz if the 
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11  are continuous. This equation models the nonlinear behavior of laminated 

beams with a relatively large thickness ratio l/h in three points bending. The exact solution is given by the 

following formulation [16, 17]: 

 







 )

3

2
()

3

2
()(  with ,

)(

)(1 2/3
3/12

2/3
3/11

'

xcdYCxcdJCxxF
xF

xF

c
y    (25) 

Where )(zJm and )(zYm  are the Bessel functions, 1C  and 2C are constants. 

Therefore, the variation of the deflection wc according to the load P is given by the following formulation: 
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Where 3C  is a constant. 

The analytical results obtained from equation (26) are given in Fig.5 and Fig.6. A good correlation was observed 

between the experimental and analytical results. 

 
Fig.5: variation of the center deflection wc according to the load P of the test specimen E. 

 

 
Fig.6 variation of the center deflection wc according to the load P of the test specimen F. 
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IV. Results And Discussion 
Many authors such as Y.X. Zhang and Y.K. Cheung (2003) [21] V. Loc Tran & al (2015) [22] and H. 

Nguyen-Van (2014), [14] have developed analytical and numerical approaches to link the state of the nonlinear 

behavior bending with the main characteristics of the specimens. These methods have complexity in application 

with a large number of unknowns to be determined. Therefore, we propose an analytical modeling of three 

points bending of symmetrical laminated composites beams with less unknowns. The experimental macroscopic 

curves show a linear behavior that has been modeled by Irhirane work. However, the nonlinear behavior 

observed for some values of the thickness ratio L/h was not modeled untill today. In this work, we used the 

classical plate theory (CPT) and Von Karman theory to study the nonlinear behavior of the beams and we 

deduced that this nonlinearity can be modeled by a Riccati equation. The results predict the experimental 

nonlinear curves with excellent accuracy. Indeed, the Riccati equations were used to model many physical 

phenomena. For example, in classical mechanics [23], in population dynamics [24] and a large variety 

application in automatic [25]. The results of our analytical modelization in the case of nonlinear behavior 

improve significantly the previously obtained ones which are based on a numerical resolution and only model 

the linear behavior. However, the material undergoes a successive damage before the first macroscopic failure. 

Thus, the microscopic failures may be observed in the matrix but not in the fiber. The following of this work is 

to introduce the failure criteria to predict the failure mode and stress associated with the first macroscopic failure 

thus to study the impact of material damage to the beam behavior before the first failure. 

  

V. Conclusion 

All the results obtained with all the proposed approximations, prove the difficulty of modeling the 

behavior of laminated beams in bending. Whereas, the Riccati equation deduced from the classical plate theory 

(CPT) and Von Karman theory used in this article improves the results compared to those in the literature. 

Furthermore, the thickness ratio L/h is a primary factor in geometrically nonlinear bending. In fact, the 

laminated composite beams with a small ratio exhibit a linear behavior. Accordingly, the modeling is 

recommended according to the first-order shear deformation theory which takes into account the transverse 

shearing strain and the correction of coefficients. However, the laminated composite beams with a large 

thickness ratio L/h show a nonlinear behavior, the modelization according to the classical plate theory (CPT), is 

strongly recommended because of its simple in application (3 unknowns) and acceptable results. 
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