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ABSTRACT - In this paper, we derive exact travelling wave solutions of the DSSH equation by a proposed 

Bernoulli sub-ODE  method and the (G’/G) expansion method. The two methods appears to be efficient in 

seeking exact solutions of nonlinear equations.  
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I. INTRODUCTION 
The nonlinear phenomena exist in all the fields including either the scientific work or engineering 

fields, such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, 

chemical physics, and so on. It is well known that many non-linear evolution equations (NLEEs) are widely 

used to describe these complex phenomena. Research on solutions of NLEEs is popular. So, the powerful and 

efficient methods to find analytic solutions and numerical solutions of nonlinear equations have drawn a lot of 

interest by a diverse group of scientists. Many efficient methods have been presented so far.  

In this paper, we pay attention to the analytical method for getting the exact solution of some NLEES. 

Among the possible exact solutions of NLEEs, certain solutions for special form may depend only on a single 

combination of variables such as travelling wave variables. In the literature, Also there is a wide variety of 

approaches to nonlinear problems for constructing travelling wave solutions. Some of these approaches are the 
inverse scattering transform, the Darboux transform, the tanh-function expansion and its various extension, the 

Jacobi elliptic function expansion, the homogeneous balance method, the sine-cosine method, the rank analysis 

method, the exp-function expansion method and so on [1-16]. In this paper, we proposed a Bernoulli sub-ODE 

method to construct exact travelling wave solutions for NLEES. 

  The rest of the paper is organized as follows. In Section 2, we describe the known (G’/G) expansion method 

and the Bernoulli sub-ODE method for finding travelling wave solutions of nonlinear evolution equations, and 

give the main steps for them. In the subsequent sections, we will apply the (G’/G) expansion method and the 

Bernoulli sub-ODE method to find exact travelling wave solutions of the DSSH equation. In the last Section, 

some conclusions are presented.  

 

II. DESCRIPTION OF THE (G’/G )-EXPANSION METHOD AND THE BERNOULLI SUB-ODE 

METHOD 
In this section we will describe the (G’/G)-expansion method for finding out the travelling wave 

solutions of nonlinear evolution equations. 

Suppose that a nonlinear equation, say in three independent variables x, y and t , is given by 

,
( , , , , , , , ......) 0

t x y tt x t y t xx yy
P u u u u u u u u u                                                                                                   (2.1) 

 

where u = u(x, y, t) is an unknown function, P  is a polynomial in u = u(x, y, t) and its various partial 

derivatives, in which the highest order derivatives and nonlinear terms are involved. In the following we give 

the main steps of the (G’/G)-expansion method. 
 

Step 1. Combining the independent variables x, y and t 

into one variable ( , , )x y t  , we suppose that 

( , , ) ( ) , ( , , )u x y t u x y t                                                                                                                        (2.2) 

the travelling wave variable (2.2) permits us reducing Eq. (2.1) to an ODE for ( )u u   

( , ', '', . . . . . .) 0P u u u                                                                                                                                        (2.3) 

Step 2. Suppose that the solution of (2.3) can be expressed by a polynomial in (G’/G ) as follows: 
'

( ) ( ) .... . .
mG

m G
u                                                                                                                                        (2.4) 
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where ( )G G   satisfies the second order LODE in the 

form 

'' ' 0G G G                                                                                                                                             (2.5) 

 

, ...
m

   and   are constants to be determined later, 0
m

  .The unwritten part in (2.4) is also a polynomial 

in '
( )

G

G
, the degree of which is generally equal to or less than m−1. The positive integer m can be determined by 

considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in 

(2.3). 

 
Step 3. Substituting (2.4) into (2.3) and using second order LODE (2.5), collecting all terms with the same order 

of '
( )

G

G
 together, the left-hand side of Eq. (2.3) is converted into another polynomial in '

( )
G

G
. Equating each 

coefficient of this polynomial to zero, yields a set of algebraic equations for , ...
m

   and  . 

Step 4. Assuming that the constants , ...
m

   and   can be obtained by solving the algebraic equations in Step 

3, since the general solutions of the second order LODE (2.5) have been well known for us, substituting 

, ...
m

 and the general solutions of Eq. (2.5) into (2.4) we can obtain the travelling wave solutions of the 

nonlinear evolution equation (2.1). 

 

In the following we will describe the main steps of Bernoulli sub-ODE method. First we consider the 

following ODE: 
2

'G G G                                                                                                                                                  (2.6) 

where 0 , ( )G G    

When 0  , Eq. (2.6) is the type of Bernoulli equation, and we can obtain the solution as 

1
G

d e
 







                                                                                                                                                 (2.7) 

where d  is an arbitrary constant. 

Suppose that a nonlinear equation, say in two or three independent variables x, y and t , is given by 

,
( , , , , , , , ......) 0

t x y tt x t y t xx yy
P u u u u u u u u u                                                                                                   (2.8) 

 

where u = u(x, y, t) is an unknown function, P is a polynomial in u = u(x, y, t) and its various partial 

derivatives,  which the highest order derivatives and nonlinear terms are involved. By using the solutions of Eq. 

(2.6), we can construct a serials of exact solutions of nonlinear equations:. 

 

Step 1.We suppose that 

( , , ) ( ) , ( , , )u x y t u x y t                                                                                                                        (2.9) 

the travelling wave variable (2.9) permits us reducing Eq. (2.8) to an ODE for ( )u u   

( , ', '', . . . . . .) 0P u u u                                                                                                                                      (2.10) 

 

Step 2. Suppose that the solution of (2.5) can be expressed by a polynomial in G as follows: 
1

1
( ) ......

m m

m m
u G G  




                                                                                                                   (2.11) 

where ( )G G   satisfies Eq. (2.1), and 
1

, ...
m m

 


 are constants to be determined later, 0
m

  . The 

positive integer m can be determined by considering the homogeneous balance between the highest order 

derivatives and non-linear terms appearing in (2.10). 

 

Step 3. Substituting (2.11) into (2.10) and using (2.6), collecting all terms with the same order of G  together, 

the left-hand side of Eq. (2.10) is converted into another polynomial in G . Equating each coefficient of this 

polynomial to zero, yields a set of algebraic equations for 
1

, , ... ,
m m

   


. 
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Step 4.  Solving the algebraic equations system in Step 3, and by using the solutions of Eq. (2.6), we can 
construct the travelling wave solutions of the nonlinear evolution equation (2.10). 

In the subsequent sections we will illustrate the proposed method in detail by applying it to the DSSH equation. 

 

III. APPLICATION OF THE BERNOULLI SUB-ODE METHOD FOR DSSH EQUATION 
In this section, we will consider the following DSSH equation: 

2
9 1 8 1 8

xxxxxx x xxxx xx xxx x xx
u u u u u u u  

1 1
0

2 2
t t x x x t

u u                                                                      (3.1) 

 

In order to obtain the travelling  wave solutions of Eq. (3.1), we suppose that 

( , ) ( ) ,u x t u x c t                                                                                                                         (3.2) 

c  are constants that to be determined later. 

By using (3.2), (3.1) is converted into an ODE 

( 6 ) ( 4 ) 2
9 ' 1 8 '' ''' 1 8( ') ''u u u u u u u  

2 ( 4 )1 1
'' 0

2 2
c u c u                                                                      (3.3) 

          

Integrating (3.3) once it follows: 

( 5 ) 2 39
9 ' ''' ( '') 6 ( ')

2
u u u u u  

21 1
' '''

2 2
c u c u g                                                                                 (3.4) 

where g  is the integration constant. 

 

Suppose that the solution of (3.4) can be expressed by a polynomial in G  as follows: 

     

0

( )

m

i

i

i

u a G



                                                           (3.5) 

where
i

a  are constants, G  satisfies Eq. (2.6).. 

 

Balancing the order of  
( 5 )

u  and 
3

( ')u  in Eq. (3.3), we have 5 3 3 1m m m     . So  (3.5) can 

be rewritten as 

0 1
( )u a a G                                                                                                                                                (3.6) 

1 0
,a a  are constants to be determined later. 

 

Substituting (3.6) into (3.4) and collecting all the terms with the same power of G  together and 

equating each coefficient to zero, yields a set of simultaneous algebraic equations as follows: 
0

: 0G g                                                

1 2 5 3

1 1 1

1 1
: 0

2 2
G c a a c a      

 2 2 2 4 4 2

1 1 1 1

1 7 2 7
: 3 1 0

2 2 2
G c a c a a a            

3 2 3 2 2 3 3 3

1 1 1 1
: 9 9 6 1 8 0 6 0G a c a a a               

4 3 2 2 2 2 3 2 3

1 1 1 1

4 5 9
: 3 9 0 1 8 3 0

2
G a a a ca          

 
5 2 3 4 3 2

1 1 1
: 2 1 6 3 6 0 1 8 0G a a a         

 
6 4 2 3 3 5

1 1 1
: 7 2 6 1 2 0 0G a a a       

 

Solving the algebraic equations above, yields: 

 
2

1 0 0
2 , , , 0a a a c g                                                                                                                                    (3.7) 
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Substituting (3.7) into (3.6), we have 

0
( ) 2u a G                                                                                                                                                     (3.8) 

2
x t                 

                  

Combining with Eq. (2.7) and (3.8),  we can obtain the travelling wave solutions of (3.1) as follows: 
 

2

0 2
( )

2

1
( , ) 2 ( )

x t

u x t a

d e













 



                                                                                                                        (3.9) 

WHERE
0

,d a  ARE AN ARBITRARY CONSTANTS.  

 

IV. APPLICATION OF THE (G’/G)-EXPANSION METHOD TO DSSH EQUATION 
In this section, we will apply the (G’/G) expansion method to solve DSSH equation: 

Suppose that the solution of (3.4) can be expressed by a polynomial in '
( )

G

G

 as follows:          

0

'
( ) ( )

m

i

i

i

G
u a

G




 
                                                                                                                                                 (4.1) 

where
i

a  are constants,  G . satisfies Eq. (2.2). 

 

Balancing the order of  
( 5 )

u  and 
3

( ')u  in Eq. (4.3), we have    5 3 3 1m m m     .  So  (4.5) 

can be rewritten as 

0 1
( )u a a G                                                                                                                                                       (4.2) 

1 0
,a a  are constants to be determined later. 

 

Substituting (4.2) into (3.4) and collecting all the terms with the same power of '
( )

G

G

 together and 

equating each coefficient to zero, yields a set of simultaneous algebraic equations. Solving the algebraic 

equations above, yields: 
2

1 0 0
2 , , 4 , 0a a a c g                                                                                                                               (4.3) 

 

Substituting (4.7) into (4.6), we have 

0
( ) 2u a G                                                                                                                                                        (4.4) 

2
( 4 )x t                  

                  

Combining with Eq. (2.2) and (4.4),  we can obtain the travelling wave solutions of (3.1) as follows: 

Case 1: 

When 2
4 0    

2

1 0
( ) 4 .u a      

2 2

1 2

2 2

1 2

1 1
s in h 4 c o s h 4

2 2
( )

1 1
c o s h 4 s in h 4

2 2

C C

C C

     

     

  

  

                                                                 (4.5) 

                

where
0

, a  are an arbitrary constants. 

       Since 2
( 4 )x t     , then furthermore we have 

2

1 0
( , ) 4 .u x t a      

2 2 2 2

1 2

2 2 2 2

1 2

1 1
s in h 4 ( ( 4 ) ) c o s h 4 ( ( 4 ) )

2 2
( )

1 1
c o s h 4 ( ( 4 ) ) s in h 4 ( ( 4 ) )

2 2

C x t C x t

C x t C x t

       

       

      

      

                                (4.6) 

Case 2: 

When 2
4 0    
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2

1 0
( ) 4 .u a      

2 2

1 2

2 2

1 2

1 1
s in 4 c o s 4

2 2
( )

1 1
c o s 4 s in 4

2 2

C C

C C

     

     

   

  

                                                                  (4.7) 

                

where
0

, a  are an arbitrary constants. 

       Since 2
( 4 )x t     , then furthermore we have 

2

1 0
( ) 4 .u a      

2 2 2 2

1 2

2 2 2 2

1 2

1 1
s in 4 ( ( 4 ) ) c o s 4 ( 4 )

2 2
( )

1 1
c o s 4 ( 4 ) s in 4 ( 4 )

2 2

C x t C x t

C x t C x t

       

       

       

      

                                        (4.8) 

 

Remark: From Section 3 and Section 4 we can see the solutions derived by the Bernoulli sub-ODE method are 

different from those by (G’/G) expansion method 

 

V. CONCLUSIONS 
We have seen that some new travelling wave solution of DSSH equation is successfully found by using 

the Bernoulli sub-ODE method. Also we make a comparison between the Bernoulli sub-ODE method and the 

known (G’/G) expansion method. One can see the methods are concise and effective. The two methods can be 

used to solve many other nonlinear problems. 
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