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ABSTRACT : This paper deals with the construction of Canonical Polynomials basis function and used to find 

approximation solutions of Second order nonlinear Fredholm – Volterra  Integro Differential Equations. The 

solutions obtained are compared favorably with the solutions obtained by Cerdik-Yaslan et. al [1]. One of the 

advantages of the method discussed is that solution is expressed as a truncated Canonicals series, then both the 

exact and the approximate solutions are easily evaluated for arbitrary values of x in the intervals of 

consideration to obtain numerical values for both solutions. Finally, some examples of second order nonlinear 

Fredholm – Volterra Integro Differential Equations are presented to illustrate the method. 
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I. INTRODUCTION 
 In recent years, there has been a growing interest in the Integro Differential Equations (IDEs). IDEs 

play an important role in many branches of linear and nonlinear functional analysis and their applications in the 

theory of engineering, mechanics, physics, chemistry, astronomy, biology, economics, potential theory and 

electrostatics. Higher order integral differential equations arise in mathematical, applied and engineering 

sciences, astrophysics, solid state physics, astronomy, fluid dynamics, beam theory etc. to mention a few are 

usually very difficulty to solve analytically, so numerical method is required. Variational Iteration Method 

(VIM) is a simple and yet powerful method for solving a wide class of nonlinear problems, first envisioned by 

He [ 2,3,4,5]. VIM has successfully been applied to many situations. For example, He [4] solved the classical 

Blasius equation using VIM. He [2] used VIM to give approximate solutions for some well known nonlinear 

problems. He [3] used VIM to solve the well known Blasius equation. He [5] solved strongly nonlinear equation 

using VIM. Taiwo [6] used Canonical Polynomials to solve Singularly Perturbed Boundary Value Problems. 

The idea reported in Taiwo [6] motivated the work reported in this paper in which Canonical Polynomials 

obtained for Singularly Perturbed Boundary Value Problems are reformulated and used to solve nonlinear 

Fredholm – Volterra Integro Differential Equations. Some of the advantages of Canonical Polynomials 

constructed are it is generated recursively, it could be converted to any interval of consideration and it is easy to 

use and user’s friendly in term of computer implementation. 

 

II. GENERAL NONLINEAR FREDHOLM – VOLTERRA  INTEGRO DIFFERENTIAL 

EQUATION CONSIDERED 
The general nonlinear Fredholm – Volterra Differential Equation considered in the paper  is of the form: 
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Where )()( tyandxy are unknown functions,  ),(),,(),( txFtxKxg are smooth functions, 
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III        CONSTRUCTION OF CANONICAL POLYNOMIALS 

 
 The construction of Canonical Polynomials is carried out by expanding the left hand side of (1). Thus 

from (1), we write the left hand side in an operator form as: 
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Thus, making use of (3), we have 
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Hence, making use of (3) in (5), we have 
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Thus, (6) is the recurrence relation of the Canonical Polynomials. 

 

IV. DESCRIPTION OF  STANDARD METHOD BY CANONICAL POLYNOMIALS 

 
 In this section, the Standard method by Canonical Polynomials for solving (1) and (2) is discussed. The 

method assumed an approximate solution of the form: 
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Where n is the degree of approximant, )0( rar are constants to be determined and )(xQr are the Canonical 

Polynomials generated recursively by (6). 

Substituting (7) into (1), we obtain 
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This is further simplified to give 
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Collect like terms in (9), we obtain 
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Thus, (10) is collocated at point ,ixx  we obtain  
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Thus, substituting (12) into (11) gives rise to N-m+1 algebraic linear equation in (N+1) unknown constants 

 .0rar  hence, extra m equations are obtained from (2). Altogether, we have (N+1) algebraic linear equation 

in (N+1) unknown constants. These equations are then solved by Gaussian Elimination Method to obtain the 

unknown constants which are then substituted into (7) to obtain the approximate solution for the value of N. 

 

V .    Demonstration of Standard Method by Canonical Basis Function on Examples 

 
 We solved the Fredholm-Volterra  nonlinear Integro Differential equation of the form: 

 

Example 1: 
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For N = 2, we seek the approximate solution  as a truncated Canonical series. 
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Equation (13) now becomes 
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Thus, (14) is then simplified further and we obtain 
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Comparing the powers of x in (15), we obtain the following: 
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For the power of x: 
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For the power of : 
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By using the condition equations, we obtain. 
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These equations are then solved and the results obtained are substituted into the approximate solution and after 

simplification gives the exact solution  
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We solved the Fredholm – Volterra Integro differential equation given as 
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Then simplified further, we obtain  
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We then collected like terms of x and the following sets of equations are obtained. 

 

For constant term: 
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Therefore, using the condition, we obtain  
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These equations are then solved and the results obtained are substituted into the approximation solution and 

after simplification gives the exact solution  
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VI    CONCLUSION 
 The method used in this paper is highly accurate and efficient. At lower degree of  N ( degree of 

approximant used ), the method gives the exact solution for the two examples considered without extra 

computational cost. Also, the Canonical Polynomials  generated are easily programmed and user friendly. 
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