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ABSTRACT: The multi-objective optimization was carried out by first formulating separate weight and cost 

objective functions, and then forming a convex combination of the objectives. Compared to other multi-objective 

schemes, this method was simple to implement, requiring no additional modifications to the GA, since laminate 

fitness was still represented by a single value (i.e., by the combined cost and weight objective functions).  

However,  results  showed  that  this  was  not  the  most  viable means  of  multi-objective  optimization  since  it  

prevented  the  GA  from  finding  the  entire  set  of Pareto-optimal designs.  This fault lies not with the GA, but 

with the fact that there is no convex combination of objective function values that will yield a Pareto-optimal 

point if the point does not lie on the Pareto-optimal curve, a phenomenon which occurred in this study.  

Nonetheless, further research is required to either improve on the ideas discussed in the paper, find better 

methods when using GAs for multi-objective optimization problems. The multi-objective scheme used in this 

work also required the scale factor to be adjusted in fine increments in order to obtain the set of Pareto-optimal 

designs for each loading condition, making this method somewhat computationally expensive. 

The purpose of this paper is to demonstrate the GA’s ability to handle more complex composite optimization 

problems through simple modifications to the basic GA.  These which discussed how to accommodate multiple 

materials in the stacking sequence.  Further modifications, which are provided here, focus on the optimization 

formulation for such problems, and demonstrate one way of easily incorporating multiple objective functions 

into a genetic algorithm. 

 

I. MULTI-OBJECTIVE OPTIMIZATION 
The  use  of  genetic  algorithms  for  multi-objective  optimization  has  been  growing  considerably  in the past 

few years.  GAs were originally used for maximization or minimization of an unconstrained function.  However, 

there has been increasing interest in optimizing two or more criteria simultaneously, especially if it is difficult to 

represent one criteria  in terms of another.  These problems are often referred to as  multi-objective  (or  vector-

valued)  optimizations  problems. One such field  of study utilizing this concept is the aerospace industry, where 

an effort has been made to incorporate cost directly into the design process.  This methodology can lead to high 

performance designs that can be built with available materials and manufacturing techniques.   Furthermore,  

such  studies can be used to formulate trade off studies between cost and weight which may aid in the selection 

of  a  design  that  minimizes  cost  and/or  weight  [29],  two  of  the  most  important  considerations  in 

aerospace applications. 

The  goal  of  single  objective  optimization  problems  is  straightforward:   find  the  maximum  or minimum 

value of a function for a given set of parameters.  The optimization concept is less clear for multi-objective 

problems, since the best value for one objective usually does not imply that the other objective(s) is 

simultaneously optimized.  Thus, the concept of Pareto-optimality is often used in multi-objective problems to 

help determine the best way to simultaneously satisfy all objectives to the greatest extent possible. 

Pareto-optimality can be explained by looking at a simple example where two generic objectives, P1 and P2 

need to be minimized, and furthermore, it is difficult to estimate P1  in terms of P2 , or vice  versa.   ( ˆP1 ,  ˆP2 

)  is  a  Pareto  optimum  set  if  there  is  no  other  point  (P1 ,P2 )  <  ( ˆP1 ,  ˆP2 ).   In Figure  5.1,  the  relation  

between  P1  and  P2  is  presented,  showing  five  different  points.   Scenarios A, B, and C provide the best 

solutions to this problem, although neither one is best at minimizing both quantities at the same time (i.e., there 

is tradeoff in this problem since one quantity tends to increase as the other decreases).  These three points 

(A,B,C) are referred to as Pareto-optimal (or non-dominated) [7] since no other point can generate lower values 

for both P1  and P2 simultaneously. The  other  options,  D  and  E,  are  not  Pareto-optimal  (or  are  

dominated)  since  C  ¡  E  and  B  ¡  D. Ultimately, the decision maker is left to decide which solution from the 

Pareto-optimal set is best. Many optimization studies have been aimed at optimizing two or more quantities 

simultaneously. The main difference between these studies is in the methodology for obtaining the Pareto-

optimal curve.  Kassapoglou [29] used multi-objective optimization to simultaneously minimize the cost and 
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Figure 1:  Multi-objective optimization. 

The set {(P1 (x), P2 (x))} for 5 different design points. 

 

weight of composite stiffened panels subjected to compression and shear loads.  The first step in the 

optimization procedure involved minimizing each parameter separately.  The lowest weight and cost 

configurations were then identified and placed in the Pareto-optimal  set.  Designs from the group optimized  for  

cost  that  were  lighter  than  the  minimum  cost  configuration,  and  designs  from  the group optimized for 

weight that were cheaper to fabricate than the minimum weight configuration comprised the remainder of the 

candidate Pareto-optimal set.  The optimum configuration from this set was chosen to be the one that minimized 

a certain penalty function.  Although the individual minimum  weight  and  cost  designs  did  not  coincide,  

results  showed  that  a  set  of  near-optimal designs could be found.  Panels configured with “J” stiffeners 

provided the lowest weight, while “T” stiffeners produced the lowest cost designs and the best tradeoff between 

cost and weight. 

Not  surprisingly,  GAs  have  also  been  applied  to  multi-objective  problems.   Schaffer  [30]  used genetic  

algorithms  for  multi-objective  problems  by  creating  equally  sized  sub-populations.   Each sub-population  

worked  on  optimizing  a  single  objective.   Although  selection  was  carried  out  in each sub-population 

individually, crossover was performed between members of both populations. Results  showed  that  this  

implementation  scheme  was  susceptible  to  bias  against  individuals that satisfied both objectives well but did 

not provide the optimum solution for either criteria, making it difficult to find the entire set of Pareto-optimal 

designs. 

Belegundu  et  al.   [31]  implemented  a  GA  in  a  slightly  different  manner  for  multi-objective optimization  

of  a  wide  range  of  problems.   The  selection  procedure  in  the  GA  was  modified  by replacing traditional 

roulette wheel selection with a scheme based on dominated and non-dominated designs.  Designs that were non-

dominated were given a rank of 1 while designs that were dominated or violated a constraint were given a rank 

of 2 and thrown away.  Successive populations were made up of the parent designs (Rank 1) and a prescribed 

number of their offspring.  If necessary, additional designs (referred to as immigrants) were randomly created to 

fill the remainder of the population, which also added diversity to the genetic search.  This process continued 

until the entire population was filled entirely with non-dominated designs, the Pareto-optimal set.  Preliminary 

testing of the GA showed that points on the Pareto curve were bunched into small groups instead of being 

spread out  evenly,  a  phenomenon known as  speciation  [7].  This problem  was  handled by  assigning  twin 

or near twin designs a rank of two, thereby eliminating them from the Pareto set.  Further testing of  the  

algorithm  showed  that  the  GA  was  effective  in  generating  Pareto  solutions  for  optimizing 

aeromechanical responses for turbomachinery airfoils, and minimizing the cost and residual stresses in the 

fabrication of ceramic composite plates. 

In this work,  the  multi-objective  formulation  will be carried out by applying a scale  factor  to cost  and  

weight  objective  functions.  To  obtain  a  Pareto  set  of  designs,  the  influence of  cost  and weight  on  the  

overall  fitness  of  a  plate  configuration  is  adjusted  from  one  extreme  to  the  other by  varying  the  scale  

factor  accordingly.   This  allowed  the  general  configuration  of  the  GA  to  be maintained since the fitness 

of each laminate design is still based on a single value that is comprised of both cost and weight information.  

An indepth discussion of this methodology will be presented shortly. 
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II. PROBLEM FORMULATION 
The composite panel under consideration is 36 in long, 30 in wide, and simply supported on all four sides, see 

Figure 5.2.  The panel can be loaded under any combination of axial and shear loads (i.e., Nx, Ny ,  and Nxy ).  

Each ply in the panel may be made of either graphite-epoxy  or Kevlar-epoxy (see  Table  5.1  for  properties)  

and  can  have  any  ply  orientation angle between −75
0 

and 90
0

, in  Increments  of 15◦ , as shown in Figure 5.2.  

The load handling capabilities of laminated composite plates comprised of two materials is the analysis  used in  

this section  of the  paper.  To determine these capabilities, two quantities must be found:  the margin of safety for 

the critical buckling load, and the margin of safety for the principal ply strains. 

 

2.1 Critical  buckling  load 

To find the critical buckling loads for a symmetrically laminated anisotropic composite plate (Nxcr , Nycr ,  Nxycr 

),  the  Galerkin  energy  method  outlined  in  Whitney  [32],  was  utilized.   Realizing  that there is no coupling 

between bending and extension for symmetric laminates (i.e.,  [Bij ]  = 0),  the strain energy, U, for transverse 

bending of a laminated plate of length (x = a) and width (y = b) is  

 
where the bending stiffness’  of the  plate  ([Dij ])  are  determined using classical  lamination  theory, see Jones [4].  

Next, the potential energy, V, of the biaxial and shear loads (N ay , and N a 
xy ) that  are applied to the plate is 

considered 

 
To determine the governing equation for the composite plate, Hamilton’s principle [33] is used 

 
Figure.2: Configuration and loading conditions for simply supported plate. 
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where δU  and δV  are the first variations in strain energy and potential energy due to the in-plane loads, 

respectively. The governing equation for the composite plate takes the form of  Table 6.1: Material properties for 

Kevlar/epoxy and graphite/ epoxy 

 
Since the effects of the D16  and D26  terms are not neglected, the surface integrals in Eq.  (6.4) are included in 

the governing equation.  This allows the transverse deflection and first variation of the transverse deflection to 

be formulated in a double sine series 

 

Substituting Eq.  (6.5) into Eq.  (6.4), performing the necessary integrations, and noting that the  
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following set of algebraic equations are obtained: 

 
and R is defined as the plate aspect ratio (a/b).  Equation (6.7) yields M N  homogeneous equations that can be 

broken into the form of   [A]{x} − λ[B]{x} = 0.  The coefficient matrix, contains terms involving  N a 
y ,  and  N 

a
xy   only.   The  smallest  value  of  λ,  λcr ,  for  which  the  determinant  of  the coefficient matrix vanishes will give 

the values for the critical buckling loads Finally, λcr  is used to calculate the margin of safety: 

 

2.2 Principal  ply  strains 

To  complete  the analysis,  the  margins of  safety  for the principle ply strains must be determined. The laminate 

strains for the composite plate are determined from the stress-strain relationship where the extensional 

stiffnesses, [Aij ] are determined using classical lamination theory once again. To calculate  the principal ply 

strains, the laminate strains are transformed through the ply angle θ using the methods described in Jones.  The  

largest  ratio  of  principal  ply  strain  (  ij )  to  the  corresponding  allowable  strain  (ij  )  is  then  used to calculate 

the margin of safety, 

 

 

 
The allowable strains for each direction (  ε11

all
 , ε22

all
 and γij

all
) were determined by comparing maximum compressive 

and tensile values and choosing the smaller of the two (a conservative approach).  The resulting values for each 

material are listed in Table 6 .1 

 

2.3  Optimization  Procedure 

The goal of the optimization is to find the stacking sequence of the plate which provides the lowest weight and 

cost but does not buckle or fail due to excessive strain.  For simplicity, it is also assumed that  the  laminate  

stacking  sequence  is  symmetric  about  the  mid-plane  and  balanced.   Since  the GA works with a string that 

represents one half of the laminate stacking sequence, the symmetry constraint is automatically satisfied.  The 
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balance constraint, which ensures that each ply oriented at +θ◦  is complemented with another ply oriented at 

−θ◦  throughout the stacking  sequence,  will be enforced using penalty parameters.  Discussion of the 

optimization procedure is split into three sections:  laminate weight and cost calculation, objective function 

formulation, and the formulation for multi-objective optimization. 

 

III. CALCULATING  LAMINATE  WEIGHT AND  COST 
The panel weight is calculated as 

 

W  = ab[ρketkeNke + ρgetgeNge]                                                 

where a and b are the dimensions of the plate,  ρke  and ρge  are the material  densities, tke  and tge are the 

corresponding ply thicknesses for each material, and Nke  and Nge  are the number of plies of Kevlar-epoxy 

and graphite-epoxy in the laminate stacking sequence, respectively. 

The cost of a laminate is based on two quantities:  material cost and lay-up cost.  The material cost for a 

laminate, Cm, is determined by multiplying the weight of each material in a laminate by its corresponding cost 

factor (Cf ) given in Table 6 .1: 

 

Cm  = ab[Cfke ρketkeNke + Cfge ρgetgeNge].                                         

Lay-up cost, Cl , is based on the amount of time required by the lay-up machine to construct each laminate.  Data  

was  obtained from a standardized manufacturing process relating  ply orientation angle  and  plate  dimensions.   

However,  since  the  dimensions  of  the  plate  are  the  same  for  each laminate, lay-up cost becomes a function of 

ply orientation angle only. 

The analysis  procedure used to  compute the layup cost  can not be revealed  in this document because  they  are  

company  proprietary  information.   Instead,  we  have  given  a  table  which  shows a  multiplier  for  the  layup  cost  

as  a  function  of  the  ply  orientation  angle  (the  table  is  coded  into the  algorithm  to  provide  information on  layup  

cost  when needed).  This information,  depicted  in Figure  3,  shows  that  the  most  expensive  plies  to  construct  

are  those  oriented  at  ±45◦ .   Plies oriented  at  0◦   degrees  are  more  expensive  than  90◦   plies  because  the  plate  

is  6  inches  longer  in the x direction.  The total cost for a laminate can now be determined by adding the 

corresponding material and lay-up costs: 

 

Ct  = Cm + Cl .                                                              

 

3.1 Objective  Function Formulation 

The optimization problem can be formulated as: 

minimize W  and Ct  such that 

                                                                λb , λs  λ 0,                                                                         (6.16) 

 

where λb  and λs  are the margins of safety for the critical  buckling load and principal ply strains, respectively.  

Two fitness functions will be utilized for this problem, one for laminate weight (Φw ) and another for laminate 

cost (Φc ).  To accommodate the genetic algorithm, the degree of constraint 

 
Figure.3:  Lay-up costs for different ply orientation angles. 
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violation  or  satisfaction  must  be  transformed  into  added  penalties  or  bonuses  [18]  that  augment each objective 

function. 

 

The fitness function for laminate weight is defined by 

 
Since  the  first  objective  is  weight  minimization,  the  numerical  values  of  the  bonus  and  penalty parameters 

given in Eq. 6.17, which will be discussed in the following paragraphs, are proportional to  the  ply  weights  of  

each  material,  providing  a  means  of  penalizing  or  rewarding  a  laminate  by adjusting laminate weight.  For 

example, if a laminate violates a constraint, a penalty parameter is added to the weight, W , making the laminate 

less desirable because its weight has been artificially increased.  To enforce the balance constraint for both 

materials, two penalty parameters, P wke  and P w ge, are added to the objective function where  w  is  the  

weight  of  a  single  ply,  Nub   is  the  number  of  unbalanced  plies  in  the  laminate, and  x  =  ke, ge  for  Kevlar-

epoxy  and  graphite-epoxy,  respectively.   Thus,  if  either  material  has unbalanced plies in a laminate, the 

laminate is penalized by an amount equal to the weight of the number of unbalanced plies, making the laminate 

artificially heavier and thereby less desirable. 

The  formula  for  feasible  laminates  in  Eq 17  is  used  if  all  constraints  are  satisfied.   Feasible laminates are 

rewarded with a bonus, ε r
w
 , whose value depends on the average material weight of a ply, and the amount of 

constraint satisfaction so that designs satisfying the constraints by a larger margin become more desirable.  The 

constraint that is closest to being violated is used to calculate the bonus parameter: 

where wa  represents the average weight of a ply. 

If  a  constraint  is  violated  the  formula  for  infeasible  laminates  shown  in  Eq.   6.17  is  used.   A laminate is 

artificially made heavier using the penalty parameter,  p: 

λp      =    (1 − min{λb , λs })P .                                              (6.20) 

 

The penalty parameter is rationalized  by first using a scale factor determined by the value of the most violated 

constraint.  Laminates that are very thin may appear desirable even when a constraint is violated.  This problem is 

handled by adding the exponent  P  to the scale factor.  A value for P will be determined in the multi-objective 

formulation given in the next section.  Parameters   λw
r   and λp  are used only if all constraints are satisfied or 

at least one constraint is violated, respectively. 

The objective function for laminate cost is formulated in a manner similar to the one for weight, except that bonus 

and penalty parameters are now proportional to the material  and lay-up costs for a ply: 

 
The balance constraints were modified first 
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where cl
x   is the cost for a single ply of material x = ke, ge for Kevlar-epoxy and graphite-epoxy, respectively.  

The parameter cl
a  is determined by dividing the sum  of  the  lay-up  costs  for  each  permissible  ply  orientation  

angle,  cl
i,  by  the  total  number  of permissible angles, Npa: 

 

Next, the bonus parameter,   cr  was developed to make feasible laminates artificially appear less expensive and 

thus more desirable: 

 

where  cm
a    is  the  average  material  cost  of  a  single  ply.   The  parameter  used  to  penalize  infeasible laminates,   

p  is identical to the one used for the weight objective function, see Eq. 20. 

 

3.2 Multi-Objective  Formulation 

The  multi-objective  formulation  is  carried  out  by  using  a  convex  combination  of  the  weight  and cost objective 

functions determined in the previous section.  This allows the fitness of each laminate to be represented by a 

single quantity: 

 

                     λlam  = λλc + (1 λ λ)λw ,           0 λ λ λ 1.                             

By combining Eq. 5.17 and Eq. 5.21, a more detailed expression can be obtained 

 
where M  = min{λb , λs }.  A set of Pareto optimal designs can be determined by varying α in small increments 

from zero to one.  To complete the formulation, the GA was tested to determine a value for P .  Initial results using 

a value of P  = 1 showed that thin laminates which violated a constraint were more desirable than feasible 

laminates.  Further testing  showed that increasing P  to a value of 2.7 eliminated this problem without penalizing 

feasible laminates too much. 

 

IV. RESULTS 
Results  will  be  given  in  two  subsections.   The  first  subsection  will  consider  results  obtained  for uniaxial  

loading  conditions,  and  the  second  subsection  will  consider  results  for  biaxial  loading. For  these  load  cases,  

the  value  of  α  was  varied  from  0  to  1  in  increments  of  0.01,  yielding  101 different combinations of cost and 

weight in the objective function.  Fifty optimization runs, using a population size  of fifty for each  run, were 

conducted for each  value of α.  The best design from each set of runs is placed in the Pareto-optimal set.  

Using this approach, there is a possibility for different  values  of  α  to  yield  the  same  optimal  design  due  to  the  

discrete  nature  of  the  problem.  But  since  the  finite  number  of  Pareto-optimal  designs  is  unknown,  many  

values  for  α  were  used to  improve  the  chances  of  finding  the  entire  set.   For  all  runs  conducted  GA operator  

probabilities are  listed in Table 6 .2. 
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4.1 Uniaxial  Loading 

  
Table 2: GA operator implementation probabilities 

 

In this section, the laminated plate was placed under a compressive load of 100 lbs/in along the x– axis of the 

plate, see Figure 1.4.  For this configuration, 6 designs were found in the Pareto-optimal set.  The GA  was  

successful  in finding only  five  of  these  designs,  see  Figure  6.5.  Point  A  depicts the minimum weight design 

while point F  is the lowest cost design.  Design D, represented by an “×” in Figure 1.5, could not be found by 

the GA for any of the values of α used.  The reasons for this will be explained shortly. 

The properties of each design are given in Table 6.3 and Table 6.4 (the strain constraint was not critical and is not 

listed).  The stacking sequence representation gives the ply orientation angles and material makeup for one half of 

the symmetrically laminated plate, with the left end corresponding to the outer edge.  In the discussion of the 

various laminate designs that follow, references will be made to the left  half of the laminated  stacking  

sequence only.  Plies that are made from graphite are superscripted with a (1), while those made from Kevlar 

are superscripted with a (2). 

As seen in Table 6.3, the possibility for different values of α yielding the same design was realized for this problem.  

Since numeric values for cost are considerably larger than those for weight, many of the different designs were 

found for small values of α, where the objective function for laminate weight  had  sufficient  influence  on  the  

overall  fitness  of  a  laminate.   The  small  number of  designs found by the GA is due to the discrete nature of 

the problem.  Unlike continuous optimization 

 
Figure 4:  Plate configuration:  uniaxial loading. 
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Figure 5: Set of Pareto-optimal designs for uniaxial loading. 

 

problems, an infinite number of possibilities for laminate weight and cost do not exist between point A and point 

E.  The set of optimal laminate designs for this problem are comprised of either 11 or 12 plies.  Any design 

consisting of 10 plies violates the critical buckling load constraint, regardless of stacking sequence or material 

type arrangement.  All laminate comprised of 13 or more plies are dominated, in a Pareto sense, by other 

designs. 

 
Once the minimum number of plies for a laminate  is determined, the only way for the GA to obtain the 

Pareto-set  of designs is to adjust a ply’s material type or its orientation angle, both of which  offer  a  discrete  

set  of  choices.   Although  there  are  numerous  designs  with  different  values for  cost,  there  are  very  few  choices  

when  trying  to  find  laminates  with  different  weight.   This  is because weight can only be adjusted by altering a 

ply’s material type or shifting between 11 or 12 plies.  On the other hand, the cost of a laminate can be 

adjusted in many ways by using different ply orientation angles (in addition to switching material types and the 

number of plies).  Thus, the number of designs in the Pareto-set is governed by the few available choices for 

laminate weight. Design  A  represents  the  lightest  laminate.   Since  the  critical  buckling  load  is  the  active  

constraint, the GA chose a combination of plies from both materials that yields the lightest laminate with the 

highest bending stiffness.  For this problem, high bending stiffness was achieved by using a combination of high 

strength material, orienting plies at 45◦ , and increasing the laminate thickness as much as possible.  Since plies 

that are furthest from the laminate mid-plane have the most influence on a laminate’s bending stiffness, the GA 

found a design with six ±45◦  plies of high strength graphite-epoxy at the outer edges of the laminate.  The inner 

portion of the laminate is comprised of Kevlar-epoxy  plies,  four oriented  at ±45◦  and one oriented  at 90◦  to 

satisfy  the balanced constraint.  Although lower in strength, each ply of Kevlar is over 35% thicker than a ply 

of graphite. By using thicker plies, the graphite material is pushed further away from the  
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Table : Laminate properties for Pareto-optimal designs, uniaxial loading. 

 
otherwise be achieved by using graphite-epoxy throughout the stacking sequence, and provides the maximum 

bending stiffness. 

If the  GA  were  to  use  all  graphite-epoxy  plies,  the  lowest  weight  design  that  does not  buckle would be [±45
(1)

6    

/90(1) ]s , requiring two additional plies to satisfy the buckling constraint, an increase of over 4% in weight when 

compared to design A.  Since graphite plies are thinner, more of them are required to provide the necessary 

laminate thickness to prevent buckling.  Likewise, if Kevlar- epoxy were used throughout the stacking sequence, 

the lightest laminate would consist of 12 plies. This  design  is  19.5%  heavier  than  A,  requiring  more  material  

to  satisfy  the  buckling  constraint since Kevlar is not as strong as graphite.  Thus, to find the lightest design, the 

GA found a design comprised  of  plies  which  provided  the  correct  balance  of  high  strength  material  and  

laminate thickness in the stacking sequence. 

Point B represents the second lightest design in the Pareto set.  Although cheaper to fabricate, this design is also 

slightly heavier than design A.  Material cost is reduced by trading two plies of graphite  for  Kevlar.   Since  the  

GA  works  with  only  half  of  the  laminate  stacking  sequence,  this results in an odd number of graphite plies, 

one oriented at 90◦  to satisfy the balanced constraint. Layup cost is decreased by switching 2 stacks of ±45◦  

plies to a stack of ±60◦  and two plies oriented at  90◦ .  Although  there  is a  smaller  amount  of graphite  in the  

stacking  sequence,  and fewer  plies that are oriented at ±45◦ , there is sufficient increase in laminate thickness to 

satisfy the buckling constraint.   The  end  result  is  an  increase  in  weight  of  approximately  1.6%  and  a  savings  

of  over 6.5% in laminate cost, with almost no change in the critical buckling load.  

As laminate cost becomes more influential in the optimization process, the GA searches for ways to satisfy the 

buckling constraint while using plies of less expensive Kevlar.  Furthermore, the GA must find designs with 

fewer ±45◦  plies in the stacking sequence since they are more expensive to layup.  The GA responds by once 

again changing a single ply of graphite to Kevlar, which increases laminate  thickness  and  reduces  material  cost.   

Of  all  graphite  plies,  the  one  oriented  at  90◦   is changed  because  it  has  the  smallest  effect  on  laminate  

bending  stiffness  due  to  it  is  orientation angle  and  its  distance  from  the  mid-plane.   Switching  the  90◦  ply  

does  not  disturb  the  balanced constraint either.  The remaining plies of Kevlar are also oriented at 90◦ , 

minimizing laminate cost but still providing enough thickness to prevent buckling.  This modification reduces the 

overall cost of the laminate by over 7.5% when compared to design B. 

The stacking sequence for design E is influenced mostly by the cost of the laminate.  Thus, the GA eliminates 

all but two plies of graphite-epoxy.  With less graphite in the laminate, the buckling constraint is satisfied because 

thickness is increased and plies are oriented at angles which give the most  bending  stiffness  (i.e.,  ±45◦  and  

±60◦ ).   Once  again,  plies  furthest  from  the  mid-plane  are oriented at ±45◦  to satisfy the buckling constraint. 

In finding designs A, B,  and C  in the Pareto set, the GA gradually increased laminate weight by  trading  one  

ply  of  graphite  for  Kevlar  in  each  successive  step.   However,  the  weight  increase from design C to E resulted 

from changing two plies of graphite to Kevlar.  Thus, it was of interest to  see  if  there  was  a  design,  comprised  

of  three  plies  of  graphite  and  eight  plies  of  Kevlar,  that would provide weight and cost characteristics between 

those of designs C  and E.  To see if the GA  could  find this design,  α  was  varied  between  0.10  (the  value  of  α  

which produced design  C )  and  0.11  (which  produced  design  E),  in  increments  of  0.001.   Although  fifty  

optimization  runs  were conducted  for  each  refined  value  of  α,  the  GA  could  still  not  find  design  D.   Thus,  

design  D  is represented with an “×” in Figure 1.5 

However, by manually adjusting the ply orientation angles using three plies of graphite (placed at  the  outer  edge)  
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and  eight  plies  of  Kevlar,  design  D  was  quickly  located.   The  reason  that  the GA could not find this design 

can be explained by looking at the fitness values for designs C , D, and  E  for  each  value  of  0.1  <  α  < 0.11.   

This  data,  listed  in  Figure  5.6,  shows  that  design  C  is the most attractive design initially.  As α increases, the 

fitness value for design E  becomes smaller than design C ’s, while design D’s fitness value is substantially 

higher than these two, regardless of the value  for  α.  Although design D’s fitness may  eventually  become more 

attractive  than design C , it will never simultaneous be smaller than both  D  and E, making it impossible for the 

GA to find it.  A possible explanation of this phenomenon is given by Das and Dennis [43] who argue that using 

convex combinations of objective functions will not produce the entire set of Pareto-optimal points if the Pareto-

optimal curve is not convex.  It can be seen in Figure 5.5 that design D clearly makes the Pareto curve non-

convex. 

For design F , cost is the only consideration in the optimization  process.  Thus, to achieve  the lowest possible 

material cost the GA uses only Kevlar in the stacking sequence.  Since Kevlar is not strong as graphite, 12 plies 

are required in the stacking sequence to satisfy the buckling constraint (as  opposed  to  11  for  all  other  designs).   

To  reduce  layup  cost  as  much  as  possible  the  stacking sequence  consists  of  eight  plies  oriented  at  90◦ .  The  

remainder  of  the  laminate  is  made  up  plies oriented at ±30◦  and ±60◦  and are placed at the outer edges of the 

laminate.  This configuration reduces layup cost as much as possible put produces enough bending stiffness to 

satisfy the buckling constraint.  Although a large jump in laminate weight exists between points E and F , designs 

found between these two points were either dominated, or violated the buckling constraint. 

The general buckling mode shape for all designs in the Pareto set is shown in Figure 1.  Under uniaxial loading 

conditions, the plate deforms in the shape of one half sine wave in both the x and y directions. 
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Figure:  Fitness comparison between designs C , D, and E  for specific values of α. 

 

4.2  Biaxial  Loading 

In  this  section,  results  are  reviewed  for  biaxial  loading  conditions,  see  Figure  6.8.  A  discrete  set of Pareto-

optimal points, consisting of 9 designs was found for this case, see Figure 1.9.  Laminate properties  for  all  

designs  are  listed  in  Table  6.5  and  Table  6.6.   The  GA  used  similar  techniques discussed  in  the  previous  

section  to  find  this  set  of  designs.   To  begin  with,  the  GA  finds  the combination of graphite and Kevlar that 

yield the lowest  possible number of plies.  For design G, the lightest  design,  the  minimum number of plies 

required to  satisfy  the buckling constraint  (the strain constrain was inactive once again) is 15, 8 plies of graphite 

and 7 plies of Kevlar.  As cost is gradually added to the objective function, the GA replaces graphite with Kevlar 

and finds stacking sequences that are less expensive to layup but still provide enough bending stiffness to prevent 

the laminate from buckling.  The cheapest design, O, is made entirely of Kevlar and is comprised of 16 plies. 

Points J , L, and N  represent designs that were not found by the GA for any value of α during the  initial  set  of  

runs  conducted,  and  are  listed  in  bold  in  Table  5.5  and  Table  5.6.   Once  again, these designs contained a 

combination of materials that yielded a value for laminate weight between designs previously found by the GA. 

For example, since design I  contains six plies of graphite and design K  contains four plies of graphite, it seemed 

likely that there may be a design between these two which may fit into the Pareto set (i.e., design J , which 

contains five plies of graphite).  Similar scenarios existed for designs L and N  also. 

To see if the GA could locate these designs, steps utilized in the previous subsection (for locating design D) were 

used again for this problem.  For design J , α was varied between 0.09 (which pro- 

 

Figure 8: Plate configuration: biaxial loading. 

 
duced design I ) and 0.1 (which produced design K ) in increments of 0.001  For designs L and N , α  was  varied  

between  0.10  and 0.11,  and 0.44  and 0.45,  respectively.  Although the  GA  was  able to locate design J  

(repesented by a “2” in Figure 5.9) for α = 0.092,  0.093, it was unable to find designs L or N .  Figure 10 shows 

that varying α between 0.10 to 0.11, the fitness value for design M  becomes  more  attractive  than  design  K ,  

while  design  L’s  fitness  is  substantially  higher  than both of these during the transition.  Similarly, the fitness of 

design N  is never simultaneously lower than  values  attained  for  designs  M  or  O,  see  Figure  11.  In  addition,  by  
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looking  at  Figure  5.9, designs  L  and  N  make  the  Pareto-optimal  curve  non-convex,  supporting the  claim  made  

by  Das and Dennis [43]  that  such design points  cannot  be found with a  convex  combination  of  objective 

functions.  Thus, it was impossible for the GA to find these designs which are represented with an “×” in Figure 

9. 

 
The general buckling mode shape for the entire set of Pareto-optimal designs found for biaxial loading are 

shown in Figure 12.  Once again, the plate deforms into a half sine wave in both the x and y directions. 
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