
RESEARCH INVENTY: International Journal Of Engineering And Science 

ISSN: 2278-4721, Vol. 2, Issue 3 (February 2013), PP 14-26 

Www.Researchinventy.Com 

14 

Analysis of Energy Spectra and Wave Function of Trigonometric 

Poschl-Teller plus Rosen-Morse Non-Central Potential Using 

Supersymmetric Quantum Mechanics Approach 

 

Antomi Saregar
1
, A.Suparmi

2
, C. Cari

3
, H.Yuliani

4 

1,4
(Graduate Student of Physics Department, SebelasMaret University, Indonesia) 

2,3
(Physics Department, SebelasMaret University, Indonesia) 

 

 

 
 

Abstract: The Energy Eigenvalues And Eigenfunction Of Trigonometric Poschl-Teller Plus Rosen Morse Non-

Central Potential Are Analysis Using Supersymmetric Quantum Mechanics. Trigonometric Poschl-Teller Plus 

Rosen-Morse Is A Non-Central Shaped Invariance Potential. Recently Developed Supersymmetric In Field 

Theory Has Been Successfully Employed To Make A Complete Mathematical Analysis Of The Reason Behind 

Exact Solvability Of Some Non-Central Potentials In A Close Form. Then, By Operating The Lowering 

Operator We Get The Ground State Wave Function, And The Excited State Wave Functions Are Obtained By 

Operating Raising Operator Repeatedly. The Energy Eigenvalue Is Expressed In The Closed Form Obtained 

Using The Shape Invariant Properties 
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I. Introduction 
One of the important tasks of quantum mechanic is finding accurate exact solution of Schrödinger 

equation for a certain potential [1][3]. It is obvious that finding exact solution of SE by the usual and traditional 

methods is impossible for real physical system, except certain cases such as a system with oscillator harmonic 

and hydrogen atom[2-5]. Thus, it is inevitable to use new methods to help us solve the real physical system. 

Among the cases where we have to refuse ordinary methods and seek new methods are in solving SE with non-

central potentials. Accordingly, different methods are used to solve SE with non-central potentials among which 

we can name, factorization method [6-9], NU method [8-10] [11,16], supersymmetry (SUSY QM) [11-13], and 

Romanovsky Polinomials[12] [13].Supersymmetri is, by definition [14][15], a symmetry between fermions and 

boson. A supersymmetric field theoretical model consists of a set of quantum fields and of a lagrangian for them 

which exhibit such a symmetry. The Lagrangian determines, through the action priciple, the equations of motion 

and hence the dynamical behaviour of the particle. Supersymmetry theories describe model worlds of particles, 

created from the vacuum by the fields, and the interactions between these particles. The supersymmetry 

manifests itself in the particle spectrum and in stringent relationship between different interaction processes 

even if these involve particles of different spin and of different statistics.Recently, some authors have 

investigated on solving Schrödinger equation with physical potentials including Poschl-Teller potential [16,17], 

Non-central potential [18], Hulthén plus Manning-Rosen potential[19], trigonometric Rosen-Morse potential 

and Scarf potential[20], Eckart potential Using NU method[21], and trigonometric Poschl-Teller potential plus 

Rosen Morse by using Romanovsky polinomial [22]. In this paper, we investigate the energy eigenvalues and 

eigenfunction of trigonometric Poschl-Teller potential plus Rosen Morse non-central potentials using SUSYQM 

method. The trigonometric Poschl-Teller was used to describe molecular vibrations, while the trigonometric 

Rosen-Morse potential was used to describe the essential of the QCD quark-gluon dynamics in the regime suited 

of the asymptotical freedom of the quarks [23-25].  The angular wave functions are visualized using Maple 12. 

 

II. Review Of Formula For Supersymmetric Quantum Mechanics 

2.1. Supersymmetry Quantum Mechanics (SUSY QM) 

Witten defined the algebra of a supersymmetry quantum system, there are super charge 

operators iQ which commute with the Hamiltonian ssH [10] 

  0, ssi HQ  with,  i = 1, 2, 3, …N (1a) 

and  they obey to algebra    ssijji HQQ ,
   (1b) 
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with ssH  is Supersymmetric Hamiltonian. Witten stated that the simplest quantum mechanical system has N=2, 

it was later shown that the case where N = 1, if it is supersymmetric, it is equivalent to an N = 2 supersymmetric 

quantum system [7]. In the case where N = 2 it is defined that, 
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here the  are the usual Pauli spin matrices, and 
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components of SUSY Hamiltonian, we shall write ssH  as H , are obtained using equation (1b) and (2) given 
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with   and , are defined as supersymmetry partner in the Hamiltonian, )(xV and )(xV  are the 

supersymmetry partner each other.  

Equations (4a) and (4b) are solved by factorizing the Hamiltonian as 
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with, 
A  as raising operator, and A  as lowering operator. 

 

2.2. Shape Invariance 

Gendenshteın [1]discovered another symmetry which if the supersymmetric system satisfies it will be 

an exactly solvable system, this symmetry is known as shape invariance. If our potential satisfies shape 

invariance properties we can readily write down its bound state spectrum, and with the help of the charge 

operators we can find the bound state wave functions [10,14]. It turned out that all the potentials which were 

known to be exactly solvable until then have the shape invariance symmetry. If the supersymmetric partner 

potentials have the same dependence on x but differ in a parameter, in such a way that they are related to each 

other by a change of that parameter, then they are said to be shape invariant. Gendenshteın stated this condition 

in this way, 
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where j = 0,1,2,.., and a is a parameter in our original potential whose ground state energy is zero. 

)(1 jj afa   where  f  is assumed to be an arbitrary function for the time being. The remainder )( jaR  can be 

dependent on the parametrization variable a but never on x. In this case V is said to be shape invariant, and we 

can readily find its spectrum, let us  take a look at H, 
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Acoording to equations (8b) and (9) we get, 
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where )(xV  is the effective potential  effV , while )(x is determined hypothetically from equation (10) based 

on the shape of effective potential from the associated system. 

By setting 0HH   and 1HH   and by applying equations (7), (8a) and (8b) we get the  

generalized 
thk  hamiltonian equation as, 
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By applying the characteristic of the Hamiltonian operated to the lowest wave function it is found that 
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Furthermore, we get the total energy spectra from equation (9) as ,  
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with  as ground state energy of the system. 

Based on the characteristics of lowering operator, then the ground state wave function is  obtained from 

equation given as, 
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Meanwhile, the first excited wave function and so forth  are obtained by operating raising 

operator to the ground state wave function  In general, 
thn excited state wave function is obtained 

from the nearest lower wave function given as,  
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The explanation above is the simple  algebra procedure to construct the hieracy of Hamiltonian. In the next 

session, the solution of Schrödinger equation will be investigated by using supercharge operator for either one 

dimension system or three dimension system which is reduced to one dimension system. 

 

III. Solution of Schrödinger Equation for trigonometric Poschl-Teller potential plus Rosen 

Morse Non-central potential using Supersymmetry method 

Schrödinger equation for trigonometric Poschl-Teller plus Rosen-Morse Non-central potential is the 

potentials present simulataneusly in the quantum system. This non-central potential is expressed as, 
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The three dimensional Schrödinger equation for trigonometric Poschl-Teller plus Rosen-Morse non-central 

potential is written as, 
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If equation (17) multiplied by factor (
2
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 ), and then the result is solved using separation variable method 

since the non-central potential is separable. By setting )()()(),,(   PrRr , with 
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from equation (18) we obtain radial and angular Schrödinger equation as, 



Analysis Of Energy Spectra And Wave Function Of Trigonometric… 

17 
 

 
 

)1(
sin

1
sin

sin

1

cos

)1(

sin

)1(

2
cot2

sin

)1(1

2

2

222

2

2

22

2
2
































 




















































 



P

P

bbaa

E
mrr

r

R
r

rR

r

r
   (19) 

with  is constant variabel separable, where   as orbital momentum number. 

From equation (19) we get radial and angular Schrödinger equation with single variable as following, 

 
  )1(

2
cot2

sin

)1(1
2

2

22

2
2 
































E

mrr

r

R
r

rR
r

r 








     (20) 

or equation (20) multiplied by (
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and than, for solve radial Schrödinger equation, we use approximation for centrifugal term,  
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from equation (22) simplied by (
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 ) we get radial Schrödinger equation,  
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The angular Schrödinger equation obtained from equation (19) is given as, 
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with 
2m as variable separation and we get one dimensional angular Schrödinger equation,  
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3.1. The solution of Radial Scrodinger Equation for trigonometric Poschl teller potential  plus Rosen 

Morse 
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trigonometric Poschl-Teller plus Rosen-Morse potential in radial with the assumption of 2

2

2

' 
m

  can be 

rewritten as follow, 

 
  













')1(
2

cot2
sin

)1()1(

22
02

2

22

2

2

22























 d

mmrm

r

r


  (28) 

Based on equation (28), the effective potential of radial SE trigonometric Poschl-Teller plus Rosen-
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with  is factorization energy or ground state energy of the system. From equation (31) it is intellectually 

guessed that superpotential in equation (30) is proposed as, 
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where A and B are indefinite constants that will be calculated. From equation (32), we can determine the value 

of )(' x  and )(2 x , then the result is inserted into equation (31) and we get 
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By analysing the similar term between left and right hand side  in equation (33), we obtain, 
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From the three equation in equation (34), it is obtained that, 
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The value of A and B arechosen by considering that the value of  is equal to zero, so, 
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By using equations (6) and (36), we get 
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The ground state wave function is obtained from equation (14) and (38) given as, 
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By using equation (15) we obtain the first excited wave function as,  
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where 1'' 10   aa , ……, nan  '  is the independent parameter to variable “r”. By inserting the 

value of the parameter to equation (39) and (37) and by using equation (40), we get 
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By repeating the step in obtaining equation (41) we get the upper levels of excited wave function as 
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The ground state radial wave functions with various value of the orbital quantum number n
 
but with 

the certain values of potential parameters are shown in Table 1.  

 

Tabel 1. ground state radial wave function for trigonometric Poschl-Teller plus Rosen-Morse non-central 

potential with different orbital quantum number 
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The radial wave function of trigonometric Poschl Teller plus Rosen Morse non central potential, it 

seems only affected  by 𝑟 function that described distant motion or imminent electron from atom core. Polar 

quantum number , 𝜇 and magnetic quantum number 𝑚 constant, at this point this research was focused on the 

same electron, therefore, the increasing of disturbance from Rosen Morse non central potential from the value of 

 , and '  that getting bigger showed the increasing hyperbolic synus factor of wave function, mathematically, 

it will be affected to the shift of wave function. The shift that occured can be seen in radial wave function side 

visualisation  on the figure 1. The effect of Poschl-Teller potential to the radial wave function determined by the 

values of l. The larger is the values of l, the larger is the values of ' which causes the increase in the wave 

amplitudes, as shown in Figure 1. The effect is larger for larger r. 

 
Figure 1. The ground state radial wave function for trigonometric Poschl-Teller plus Rosen 

Morse non central potential for different n  

Figure 1. Show that effect of the Poschl Teller non central potential result in the shifting of wave 

function toward the radial direction 𝑟, thus increasing wave amplitudo. The shifting that occured can be seen on 

the visualisation of wave function radial side on pigure 1, it can be seen that the effect of Poschl Teller non 

central potential results wave function shift towards radial direction 𝑟, but not too significant, then it increasing 

amplitudo wave. The shift of amplitudo indicates the energy level that getting bigger then electron  by way 

motion that not too far, which indicates the probability of finding bigger electron.By using equations (8a), (8b) 

and (36), we determine the potential partner which have shape invariant as 
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and, 
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If we have chosen parameters , …then  

obtained by changing ' into 1' in equation (42a) is given as 
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From those two equations (42b) and (43) can be seen that V+ (r,a0) have similar shape with , 

and by using shape invariance  relation in equation (8) we obtain R(a1) as 




























 

2

2

2

2

2
2

2

2

2

2

101 )2'(
)2'(2

)1'(
)1'(2

),(),()( 











 mm
arVarVaR

  (44) 

We repeat the step as on the determination of equation (44) by using equations (42a), (42b), and (43), 

to obtain  and , as, 
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From equ. (45a) and (45b) so obtained, 




























 

2

2

2

2

2
2

2

2

2

2

212 )3'(
)3'(2

)2'(
)2'(2

),(),()( 











 mm
arVarVaR

  (46) 

Then, the determination steps on equ. (44) or equ. (46) above are repeated until parameters heading to n, an  to 

determinate R(an) and finally obtained, 
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If equ. (47) and equ. (36c) inserted into equation (13) we obtain the energy spectrum for Rosen Morse system 

i.e., 
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1)1()1'(''   , so equ. (48) is energy solution of Schrödinger equation for 

trigonometric Poschl-Teller plus Rosen Morse non central potential with 
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 (49) 

Equation (49) showed energy spectra of trigonometric Poschl-Teller plus Rosen Morse non central potential, 

with,  

ℏ : planck constants,  

𝑚𝑒 : elementary particle mass 

𝑎 and 𝑏 : constants potential depth,  

𝑛 : principe quatum numbers, 𝑛=1,2,3…  

𝑛𝑟 : radial quantum numbers, 𝑛𝑟=0,1,2…  

𝑙 : orbital quantum numbers. 

From equation (49), we draw the graph of  the energy spectra of trigonometric Poschl Teller plus Rosen 

Morse non central potential for different level shown in Figure 2. 
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Figure 2. The Energy spectra graph of Rosen Morse potential, with and without the presence of Poschl-Teller 

potential, with m =1, , μ =1, =2, and  

Figure 2. shows that the value of energies affected by quantum orbital number l which depends on the 

values of Pochl-Teller potential’s parameter. 

 

3.2 The solution of angular Schrödinger equation trigonometric Poschl-Teller plus Rosen Morse non-

central potential. 

To ease the solution of angular Schrödinger Equation, i.e., 

EHH
m

 ))1((
2 4

1

2


  (50) 

If equ. (50) incorporated to equ. (28) so angular Schrödinger equation Poschl-Teller plus Rosen Morse  non 

central potential chanced into, 

EHH
bbmaa

md

Hd

m













 





 22

4

122

2

22

cos

)1(

sin

)1(

22

  (51) 

Based on equ. (51), effective potential of angular trigonometric Poschl-Teller plus Rosen-Morse  non 

central potential is expressed as, 
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According to the form of those effective potential equations, then superpotential equation of angular  

trigonometric Poschl-Teller plus Rosen-Morse  non central potential is expressed as,  
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where A and B are indefinite constant that will be calculated. From equ. (54), we determine the value of  

and , and by using equation (6) we have 
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By using in common concept of coefficient between left and right hand side, we obtain 
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from those third equations on equ. (56) is obtained, 
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By using eqs. (8a) and (8b) are obtained, 
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From  those two equations (59a) and (59b) is obtained      
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From those two equ. (59b) and (60) can be seen that V+ ( ,a0 ) have the same form with  , 

and by using shape invariance relation on equ. (8), is obtained that  
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We repeated the step as on determination of equ. (61) with using steps equ. (59), and equ. (60) to obtain 

 and  equations, so obtained, 
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By repeated the step from equ. (62a) to (62b) we often,  
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By repeating the steps in equ. (61) or equ. (63) until parameters heading to n, an  to obtain R(an ) as on equ. 

(64) and finally it is obtained the parameter that has energy order given as, 
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If equ. (65) and equ. (57c) are inserted into equation (13) we obtain energy spectrum of Poschl-Teller system so, 
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By using the parameter that has the order the same with energy expressed in equation (50) we obtain the orbital 

quantum number given as 



Analysis Of Energy Spectra And Wave Function Of Trigonometric… 

23 
 

 2
2

12

4

1 2)1())1(( nbmaa     

 

or  nbmaa 2)1( 2            (67)         

The angular quantum numbers on equation (67) is used to calculate energy spectrum for potential non central 

system.              

By using equ. (6) and (58) are obtained 
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By using lowering operator on equ (68b), we calculate the ground state wave function for angular 

trigonometric Poschl-Teller plus Rosen Morse non-central potential as follows, 
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Then, by using increasing operator on equ (68a) and basic wave function determinated first level 

excited wave function, 
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To determine the excited wave function above can be done as on determination of  first level excited 

wave function as follows, 
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Therefore obtained wave function level that is wanted. 
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Furthermore, the result of each calculation from 1
st 

and 2
nd

 excited wave function, with the value , m, a, and b, 

which is listed in table 2, at the same time altogether with the visualisation of polar wave function shown on 

table 2, below, 
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Table 2. Polar wave function of trigonometric Poschl-Teller potential plus Rosen Morse 
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Table 2. shown the form of polar wave function connected to the angular spin direction electron 

momentum also describe solid dependent probability on the angular. Generally, polar wave function definition 

is same with radial wave function which is describe the probability of electron finding, but both of it have 

difference on its motion; if radial wave function connected to the far or near of the electron to the nucleus, so 

polar wave function is connected to the rotation of the electron to the nucleus. 

IV. Results And Discussion 
The radial wave function of trigonometric Poschl Teller plus Rosen Morse non-central potential seems 

only affected by 𝑟 function that describe far or near electron motion frrom the atom core. Orbital quantum 

numbers , 𝜇, and magnetic quantum numbers constants 𝑚, on this research is focused on the same electron. 

Hence to that, the increasing effect of Rosen Morse non central potential of , and 𝜈’ value that getting bigger 

show the increasing hyperbolic synus factor of wave function, mathematically, will be affected to the shift of 

wave function. The shift that occured can be seen on the visualisation of radial ground state wave function on 

Figure 1, it shown that trigonometric Poschl Teller potential results on the shift of wave function towards 𝑟 

radial direction, but not too significant, at the same time increase wave amplitudo. The shift of amplitudo 

indicates the level of energy that getting bigger also electron byway motion that is not too distant, which 

indicates the probability of bigger electron found.Equation (49), is obtained energy spectra grafic of 

trigonometric Poschl Teller  plus Rosen Morse non central potential, can be seen that value of orbital quantum 

numbers affected by  value, with m, , μ dan  constants. The bigger  determinate capacity of effect 

from Poschl Teller potential, at this point, the bigger , Rosen Morse potential will experience the bigger 

effect from Poschl Teller potential, so that the electrons need higher energy to be on certain layer.On table 2, 

showed that parameter and  influencing wave function. Value of  gives exponential factor to the wave 

function while  value increasing sinusoidal factor wave function. At  this matter, value of polar quantum  

number factor ( )  gives influence on the complex fraction of angular  function. Parameter  which is 

affected by factor ‘m’value that break down angular  function with little angular  function,  parameter 

breaks down angular  function with big angular  function. Figure from table 2, show that there are close and 

open wave visualisation  results. Those results are affected by the existence of sinusoidal factor on the wave 

function that were used. It can be seen that if synus factor on wave function equation  have value, then the 

resulted wave visualisation is open, and on the contrary. 

 

V. Conclusion 
Based on the describtion, on III and IV point, proved that trigonometric Poschl Teller potential plus 

Rosen Morse non central potential for group of shape invariance potential can be solved with Supersimmetric 

method. 
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