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Abstract: 
It is undeniable that the annular fin of hyperbolic profile with constant thermal conductivity and uniform 

convective coefficient is important in many applications of heat transfer engineering. The importance of this fin 

configuration stems from its close resemblance to the annular fin of optimal cross section capable of delivering 

maximum heat transfer for a given volume of material. In the present paper, a new combined integral method, 

based on two integral relations, is presented for  approximate solving the generalized Bessel equation defining 

the change in the temperature of  hyperbolic-profile annular fins. Certainly, the central objective here is to 

avoid the evaluation of the elegant, but intricate exact analytic temperature distributions and companion fin 

efficiencies containing modified Bessel functions of fractional order. Results are presented for the two variables 

of interest in thermal design: the fin tip temperature (a local quantity) and the fin thermal efficiency (a global 

quality ratio). 
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I. INTRODUCTION 
In modern era, heat exchange devices are becoming increasingly sophisticated and continually require 

greater precision, adequate sizing, improved reliability, and extended life [1–5]. To meet these stringent 

demands, exceptional fin profiles have been ceaseless explored in theoretical studies, numerical simulations and 

experimental measurements all over the world [1–5]. From geometrical considerations, the annular fin can have 

six different profiles: uniform, triangular, trapezoidal, concaveparabolic, convex parabolic and hyperbolic. A 

review of heattransfer textbooks written over the last 30 years reveals that the explanation of annular fins is 

solely restricted to the annular finof uniform profile. While most textbooks resort to the simplisticfin efficiency 

diagram exclusively [6-18], someothers [19–24] formulate the governing quasi 1-Dfin equation, deduce the 

temperature distribution along with theheat transfer rate through the fin efficiency. In this regard, the annular fin 

of hyperbolic profile turns out to be the foremost important fin that can be attached to round tubes because it 

resembles the optimal annular fin of convex parabolic profile discovered by Schmidt [25]. Unquestionably, the 

latter has become staple in heat transfer engineering because of its unique ability to reject maximum heat 

transfer for a given volume of metallic material [1–5]. From a fundamental standpoint, the temperature change 

along an annular fin of hyperbolic profile with constant thermal conductivity and uniform convective coefficient 

is governed by a two-term differential equation of second-order with a variable coefficient. By virtue of a proper 

transformation, the differential equation falls under the category of a generalized Bessel equation. Although this 

equation admits an exact analytical solution, it is of intricate form because of the presence of modified Bessel 

functions of fractional order. Hence, the numerical evaluation of temperatures and/or heat transfer rates is quite 

complicated and time-consuming. 

Among the existing family of annular fins possessing tapered cross sections, it is widely recognized 

that the annular fin of hyperbolic profile is the foremost fin shape candidate for practical applications [1–3]. 

From an optimization standpoint, the annular fin of hyperbolic profile closely resembles the optimal annular fin 

of convex parabolic profile. As far as the modeling is concerned, the temperature change along an annular fin of 

hyperbolic profile is governed by a quasi-onedimensional heat equation, the socalled generalized Bessel 

equation. Despite that this equation admits an analytical solution for combinations of the enlarged Biot number 

M
2
 and the normalized radii ratio c, the evaluation of local temperatures and heat transfer rates with modified 

Bessel functions of first kind and fractional order is complicated and time-consuming. Kraus et al. [2] present an 

analytical solution for a convecting annular hyperbolic fin of constant thermal conductivity in terms of modified 

Bessel functions. Inrecentyears, Arauzo et al. [26] analyzed the problem considered by Krausetal. [2] and 

derived a truncated series solution and claimed the solution. In another paper, Campoand Cui [27] applied a 
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coordinate transformation to convert the Bessel equation into a differential equation for a straight fin which 

admits analytical solution in terms of the hyperbolic functions. More recently,  analogous investigations nave 

been carried out by Campo and Lira [28]. Campoetal. [29] have performed a heat calculation of a hyperbolic-

profilefin with the use of two simple numerical methods of solving the generalized Bessel equation governing 

the temperature variation in hyperbolic-profileannular fins, one of which represents a finite-difference technique 

with an uncharacteristic coarse mesh, and the other is a shooting technique . Certainly, the central objective here 

is to avoid the evaluation of the elegant, but intricate exact analytic temperature distributions and companion fin 

efficiencies containingmodified Bessel functions of fractional order. Recently, Yangetal. [30] used adouble 

decomposition method to analyze anannular fin of hyperbolic profile with temperature dependent (linear) 

thermal conductivity. 

The present paper addresses the combined integral method as an alternate computational procedure for 

solving the governing quasi-one-dimensional heat equation in approximate manner. Due to its inherent 

simplicity, the combined integral method may be attractive to thermal design engineers and also to instructors of 

graduate courses on heat transfer. Factors influencing the structure of the power series solutions and their 

exactness will be discussed at length. 

 

II. MATHEMATICAL MODEL 
2.1. Formulation 

An annular fin of hyperbolic profile is formed with the path oftwo symmetric hyperbolas 

1 1( ) ( / )y r r r , as displayed in Fig. 1. The sizing of this fin depends on four dimensions: the inner radius
1r , the 

inner semithickness 
1 , the outer radius 

2r , and the outer semithickness
2 . According to [4], the cross section 

of the annular fin of hyperbolic profile is of remarkable significance becauseof its affinity to the cross section of 

the annular fin of convex parabolic profile capable of delivering maximum heat transfer for a given volume of 

material. In this sense, the latter fin has been aptly named the optimal annular fin in [31]. 

 
Figure 1. Sketch of an annular fin of hyperbolic profile 
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The temperature variation along the annular fin of hyperbolic profile obeys the dimensionless fin 

equation [31]: 

 

2
2 2 3

2

d
0

d
R M R

R


   (1) 

subject to the boundary conditions of prescribed temperature at the fin base 

 1, R c    (2) 

and negligible heat loss at the fin tip 

 
d

0, 1
d

R
R


   (3) 

The dimensionless variables for the temperature h and the radial coordinate R used in Eqs. (1) and (2) are 

 
2

,
b

T T r
R

T T r
 




 


 (4) 

The two parameters that surface up in the formulation are the enlarged Biot number 
2 3

2 1 1/ ( )M hr k r  in Eq. 

(1) and the normalized radii ratio 
1 20 / 1c r r   . 

 The trademark of the class of quasi-1D fin equations descriptiveof annular fins in cylindrical 

coordinates alludes to the curvature term d / dR  [1–4, 30]. Nonetheless, the absence of d / dR in thequasi-1D 

fin equation (2) for the annular fin of hyperbolic profileis striking. The heat transfer rate Q from a fin to a 

neighboring fluid is customarily computed indirectly with the fin efficiency 

 
ideal

Q

Q
   (5) 

in two equivalent ways: utilizing the derivative of ( )R at the fin base 

 
2 2

d
2

dR

(1 )

R c

M c



 

 
  

 



 (6) 

or employing the integral of ( )R over the fin length 

 

1

2

2 d

1

c
R R

c


 




 (7) 

 
2.2. Exact analytic solution 

The general solution of the generalized Airy equation (2) is [32] 

 
2/3 2/3

1 2(R) Ai( ) Bi( )C M R C M R    (8) 

where Ai(*)  and Bi(*)  are the Airy functions [32]. For the special case, the alternative general solution is 
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where (*)vI  denotes the modified Bessel functions of first kind offractional order v , 

2 2 2 2

2 1/ / ( )m M c hr k c  . Similarly, the exact analytic fin efficientcy
*  is 
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III. APPROXIMATE ANALYTICAL METHODS 
3.1. The Mean Value Theorem for Integration [26, 27] 

Let us first isolate the troublesome dimensionless variable coefficient R in Eq. (2). Then, R can be 

conceived as a function outlining a straight line from the base R c  to the tip 1R   in the closed interval [c,1]. 

Upon applying the mean value theorem for integration to the function R , the result is 

 
11 1

d
1 2c

c
R R R

c


 

   (11) 

where R  denotes the functional mean of 2R . The idea now is to replace R by R  in Eq. (2), so that the 

dimensionless quasi-1D fin equation is converted to 
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2
2

2

d
0

d
M R

X


   (12) 

As opposed to Eq. (2) that contains one variable coefficient, the product 2M R , now Eq. (9) possesses one 

constant coefficient, the product 2M R . For conciseness, let us name a new constant coefficient 2 2W M R and 

concurrently introduce the coordinate transformation X R c  . The quasi-1D fin equation (9) evolves into  

 

2
2

2

d
0, 0 1

d
W X c

X


      (13) 

so that the two boundary conditions in (3) are 

 
d (1 )

(0) 1, 0
d

c

X





   (14) 

At this juncture, it can be asserted that the new formulation given by Eqs. (11) and (12) is identical to the 

formulation for a straight fin of uniform profile of length (1 )c  [4, 6]. Skipping the algebra, the solution of 

Eqs. (11) and (12) when rewritten in terms of R , renders the approximate temperature distribution of form 

 

1 1
(2 )
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 
 




 (15) 

which embraces the two original parameters c and m . In Figure 2, wehave plotted the temperature distributions 

in a fin with 1/ 5c  (a) and 1/ 2c  (b) for parameter m  ranging from 1/ 2 to 2. We state  a fairly coarse 

approximate solution for the function ( )R  obtained on the basis of the approximate formula (15). The largest 

deviations of the approximate temperature profiles from the exact ones take place at relatively small values of 

the parameter с. Our numerical investigations have shown that, only at 3/ 4 1c  and 1m  , the approximate 

and exact temperature profiles are fairly close.  

 

 
     

(a)       (b) 

Figure2. Temperature distribution for c = 1/5 (a) and c = 1/2 (b) for different parameter m:  

solid line – exact formula (10); dashed line – approximate formula (15) 

 

Designating the fin efficiency by integration in Eq. (5b) by   and later inserting Eq. (13) into Eq. (7) 

yield the approximate expression [27] 
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 (16) 

whose evaluation can be done with a calculator. In contrast, the evaluation of the exact fin efficiency in Eq. (10)  

necessitates symbolic algebra codes, such as MAPLE, MATHEMATICA or MATLAB. Figure 3 shows the fin 

efficiency as a function of fin parameter m for 0.1c  , 0.3, 05 and 0.7. The relative error of calculating the 

parameter 
 
is determined as 

 
*

*
100%

 





  (17) 
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The calculations, performed by formula (16), have shown that the approximate estimation of the efficiency of 

the fin
 
is fairly coarse (Table 1). For example, at 0.1c   and 0.5m   and 2, we have an error 5.2   and 

14.8%, respectively. In the case where 1/ 2c  ,  the calculation error substantially decreases but remains fairly 

high. For example, at 0.5m  , we have 1%  . The curves of the efficiency 
 
calculated by the exact formula 

(10) and the approximate formula (16) are presented in Fig. 3. We see that, only at fairly large values of the 

parameter c  ( 0.5 1c  ), the known approximate solution (16) can be used with certain reserves. It should be 

also noted that the presence of the exponential function in the formula is inconvenient in the case where the 

engineering calculations of a hyperbolic-profile fin are performed with the use of a calculator.  

 

Table 1. Fin efficiency   for a normalized radii ratio c = 0.1, 0.5 and variable fin parameter m 

c m 
*    (%)  

0.1 0.5 0.6576 0.6920 5.2 

0.1 1 0.3526 0.3632 3.0 
0.1 2 0.1552 0.1322 14.8 

0.5 0.5 0.9647 0.9674 0.28 

0.5 1 0.8743 0.8823 1.87 

0.5 2 0.6497 0.6618 1.33 

 

 
Figure 3. Fin efficiency as a function of the fin parameter m for different values of c: 

solid curve – exact solution; dashed curve – approximate solution (16) 

 

3.2. Combined Integral Method (CIM) 

The temperature function ( )R is defined by the cubic polynomial  

 
2 3( ) 1 ( ) ( ) ( )R A r c B r c C r c         (18) 

The coefficients B and C are determined with the use of the boundary condition  (3) and the designation 

 (1) b   (19) 

Solving the system of equations following from (3) and (19), we find the coefficients B and C and obtain  

    
2 3

3( 1) 2(1 ) 3( 1) 2 1( ) 1
1
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1

b c A b cA A
r c r

c
R

c

c
r c

   


 
           

    
 (20) 

Fot determining the coefficients ( ) / dc RA   and (1)b  , we construct two integral relations. Integration of 

Eq. (1) in view of the boundary condition (3) and the relation ( ) / dc R A   gives 

 
1

2( ) d /
c

R R R A M    (21) 

Then we multiply the differential equation (1) by ( )R c and integrate the relation obtained: 

 
1

2

1
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dc c

R c R M R R R c r
R


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Integrating the first termin (22) be parts two times, we arrive, in view of the boundary conditions (2) and (3) and 

the relations (1) b   and ( ) / dc R A  ,  at the integral relation  

 
1

2( ) ( )d (1 ) /
c

R R R c R b M     (23) 

Substitution of the temperature function (20) into (21) and (23) gives the system of two linear algebraic 

equations  
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Solving system (24), (25) , we obtain  
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 (26) 
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       
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
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 

      
 (27) 

The curves of the temperature function ( )R , calculated by formula (20) with the use of (26) and (27) 

at 1/ 5c   and 1/ 2 , are presented in Fig. 4. The temperature profiles constructed on the basis of (20) are 

almost coincident with the temperature profiles constructed on the basis of the exact formula (9). This allows the 

conclusion that the approximate solution of the boundary-value problem  (1)–(3)  on the basis of the CIM is 

wery good.  

 

 
(a)       (b) 

Figure4. Temperature distribution for c = 1/5 (a) and c = 1/2 (b) for different parameter m:  

solid curve – exact formula (10); dashed curve – approximate formula  (20) 

 

 For the temperature of the top of the fin,  from (9)  we obtain 
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and arrive at the very simple formula  
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The curves of the temperature of the fin top (1) calculated by the approximate formula (29) are completely 

coincident with the exact ones calculated by formula (28) (Fig. 5). 

Substitution of the derivative d ( ) / dc R  determined by (26) into (6) gives a very simple formula for 

the efficiency of the fin  
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2 4

2 2
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120
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( )
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


   
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      

 (30) 

The curves of 
 
calculated by the exact formula (10) and the approximate formula (30)  are presented in Fig. 6. 

We state the practically complete coincidence of the indicated curves. The relative error in calculating the fin 

efficiency by formula (30) is wery small (Table 2). For example, at 0.1c   and 0.5m   and 2 , we have an 
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error 0.1   and 1.1% , respectively. In the case where 0.5c  , at 0.5m  , we have an error 0.0003%  . 

Consequetly, the simple quadrature formula (30) obtained by us allows one to perform an engineering 

calculation of the efficiency of hyperbolic-profile fins (with a very high accuracy) with the useofa usual 

calculator instead of the complex calculation by the exact formula (10) including modified Bessel functions of 

fractional order. 

 

 
Figure5. Dimensionless tip temperature versus parameter m  for different values of  c 

 

 
Figure6. Fin efficiency as a function of of fin parameter m for different values of c: 

solid curve –exact formula (10); dotted curve – approximate formula (30) 

 

Table 2. Fin efficiency   for a normalized radii ratio c = 0.1, 0.5 and variable fin parameter m 

c m 
*    (%)  

0.1 0.5 0.6576 0.6584 0.1 
0.1 1 0.3526 0.3551 0.7 

0.1 2 0.1552 0.1569 1.1 

0.5 0.5 0.9647 0.9647 0.0003 

0.5 1 0.8743 0.8742 0.005 
0.5 2 0.6497 0.6492 0.157 
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IV. CONCLUSION 
 The main conclusion to be drawn is that when dealing with annular fins of hyperbolic profile, usage of 

modified Bessel functions for solving the quasi-1D heat conduction equation can be obviated. Application of 

combined integrak method furnishes an unexpected, facile route that permits the determination of approximate 

analytical temperature distributions and heat transfer rates for engineering applications. It turns out that both the 

temperature distribution and the fin efficiency are of simple algebraic form. The two expressions can be 

evaluated with a calculator for real values of the two controlling parameters, the normalized radii ratio c and the 

parameter m. As compared to the known approximate solution based on the mean value theorem for integration, 

the computational formula obtained on the basis of the combined integral method is more simple and is 

substantially (by several orders of magnitude)  more exact. Furthermore, the simple methodology can be easily 

extended to all annular fins with variable profiles: uniform, triangular, concave parabolic, convex parabolic and 

hyperbolic. 
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