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Abstract: The role of stability of high order exponential variational integrators (EVIs) when they are applied to 
mechanical systems with holonomic constraints, is extensively examined and discussed. This class  of geometric 
type integration schemes are determined through a discretization of the variational Hamilton's principle and the 
definition of a characteristic discrete Lagrangian. The formulation of exponential interpolation functions is 
tested on the discrete Euler-Lagrangian equations in the presence of constraints.  The resulting schemes are 
then applied on dynamical multibody systems with holonomic constraints, choosing the double pendulum as a 
concrete example. The long-time behavior of the EVIs, which reflects their property of stability was found to be 
very good compared to that of other traditional methods.  
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I. INTRODUCTION 
During the last decades, great emphasis has been given by researches, to the time and  space 

discretization in treating numerically the Lagrange and Hamilton methods and solve the differential equations 
governing the mechanical system in question. To this aim, obviously one needs first to define the discrete 
analogue of the continuous methods,  like discrete variational calculus, discrete Lagrangian and Hamiltonian 
functions, the  discrete Hamilton principle etc. (Marsden and West, 2010; Heirer et al., 2003; Kosmas and 
Leyendecker, 2016; Kosmas and Leyendecker, 2019;  Kosmas and Leyendecker, 2016).   

In recent years, for the solution of mechanical systems numerical methods that preserve  the underlying 
geometric structure of the system are widely used. As a special case, the  class of the variational integrators have 
been proven to be symplectic and momentum preserving (Engquist et al., 2009; Kane et al., 2001).    

When solving conservative problems these methods are derived by mimicking the continuous  
Hamilton's principle, while for dissipative and/or controlled mechanical systems the Lagrange-d'Alembert 
principle is preferable. Both approaches lead to discrete versions of the known  principles (Leyendecker et al., 
2004; Junge et al., 2005, Schmidt et al., 2009). In order to improve the accuracy of the standard variational 
integrators, high order schemes  can be derived via the approximation of the action on a finite-dimensional 
function space  and use of numerical quadrature formulas (Stern and Grinspun, 2009).    

In our previus work we have proposed exponential variational integrators derived by using a  discrete 
Lagrangian defined as a weighted sum over continuous Lagrangians evaluated inbetween number of 
intermediate points (Kosmas and Leyendecker, 2016; Kosmas and Leyendecker, 2019;  Kosmas and 
Leyendecker, 2016). The  accuracy of these EVIs (Kosmas and Vlachos, 2012; Kosmas and Papadopoulos, 
2014; Kosmas and Leyendecker, 2012; Kosmas and Leyendecker, 2014; Kosmas, 2011), especially for long 
term integration, is very good as has been  shown from the comparison of their results with those of several 
similar variational integrators (Hochbruck et al., 1998; Kosmas, 2020; Kosmas et al., 2020).    

In the present article, we make an effort to extend such numerical schemes so as to become applicable 
to conservative mechanical systems. Initially we focus on cases where holonomic constraints are present. To this 
purpose, we first define the continuous and the discrete versions of the Euler-Lagrangian equations for such 
systems (Section 2), and then we use them for the proposed high order schemes described (Section 3). Finally, 
we test the derived schemes on the numerical solution of the double pendulum system and compare their 
efficiency with that of some standard methods. 

 
II. REVIEW OF MULTIBOBY SYSTEM DYNAMICS WITH HOLONOMIC CONSTRAINTS 

We here turn our interest on multibody system dynamics with holonomic constraints. From those we 
will use Hamilton's principle as expressed via the variation of the action 𝑆  
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𝛿𝑆 = 𝛿 𝐿 𝑞, 𝑞, 𝑡 − 𝜆!𝜑 𝑞, 𝑡 𝑑𝑡!
!!

= 0    (1) 
In the latter equation, the 𝑞 and 𝑞 are the generalized displacements and velocities respectively, while 𝐿 denotes 
the Lagrangian of the system. Additionally 𝜑 is the expression of the constraints, which we will consider as 
𝜑 𝑞, 𝑡 = 0 and is then used in (1) by adding a Lagrange multiplier 𝜆. The described variational method leads to 
the Euler-Lagrange equations which can be written as  

𝑑
𝑑𝑡

𝜕𝐿 𝑞, 𝑞, 𝑡
𝜕𝑞

−
𝜕𝐿 𝑞, 𝑞, 𝑡

𝜕𝑞
+ 𝜑! 𝑞, 𝑡 𝜆 = 0 

𝜑 𝑞, 𝑡 = 0       (2) 
and then solved using numerical methods, see (Leyendecker et al., 2008).    

The proposed geometric scheme mimics the steps of the continuous formalism. Thus we first make use 
of the time step ℎ that divides the time integral [𝑡!, 𝑡] into 𝑁 subintervals,  

𝑡! = 𝑖ℎ,      i = 0,1,2, . . . ,N,       𝑁 ∈ ℕ.   (3) 
We then define  

𝑞! = 𝑞 𝑡!   and  𝑞! = 𝑞 𝑡!    (4) 
the discrete configurations and velocities respectively and the discrete versions of the Lagrange multipliers 
using  

𝜆! = 𝜆 𝑡! .       (5) 
For a smooth and finite dimensional configuration manifold 𝑄 we can then define the discrete Lagrangian 

𝐿!:𝑄×𝑄⟶ ℝ,       (6) 
as an approximation of a continuous action, thus  

𝐿! 𝑞! , 𝑞!!!, ℎ ⋍ 𝐿 𝑞, 𝑞 𝑑𝑡.!!!!
!!

     (7) 
Using the discrete variational principle, the solutions of the discrete system are determined from 𝐿! by 
extremizing the discrete action sum, keeping the endpoints 𝑞! and 𝑞! fixed. The resulting discrete Euler-
Lagrange equations are then  

𝐷!𝐿! 𝑞! , 𝑞!!! + 𝐷!𝐿! 𝑞!!!, 𝑞! − ℎ𝜑!! 𝑞! 𝜆! = 0 
𝜑 𝑞!!! = 0,      (8) 

where 𝑘 = 1, . . . ,𝑁 − 1 and 𝐷! stands for the derivative with respect to the 𝑖-argument of 𝐿!, see (Leyendecker 
et al., 2008) and (Kosmas, 2019).  
 

Figure1. Double pendulum system. 

 
 
 

III. HIGH ORDER EXPONENTIAL VARIATIONAL INTEGRATORS 
In order to extend the variational integrators to arbitrary and thus high orders an approximation of the 

action integral along the curve segment between 𝑞! and 𝑞!!! must be considered. That can happen by 
Introducing intermediate points which are then used for the expressions for the configurations configurations 𝑞!

!  
and velocities 𝑞!

! ,  𝑗 = 0,… , 𝑆 − 1, S ∈ ℕ, at time 𝑡!
! ∈ [𝑡!

! , 𝑡!!!
! ]. In addition we define 𝑡!

!  as 
𝑡!
! = 𝑡! + 𝐶!

!ℎ!,     (9) 
using 𝐶!

! ∈ [0,1] such that  
  𝐶!! = 0,𝐶!! = 1,     (10) 

which also defines a time step ℎ ∈ ℝ . 
Exponential variational integrators of high order arew then defined using 
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     𝑞!
! = 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!!,     (11)  

and     
𝑞!
! = 𝑔! 𝑡!

! 𝑞! + 𝑔! 𝑡!
! 𝑞!!! .   (12) 

for (Kosmas and Leyendecker, 2019; Kosmas, 2020) 

   𝑔! 𝑡!
! = sin 𝑢 −

!!
!!!!
!!

𝑢 sin!! 𝑢 ,  (13) 

and 

𝑔! 𝑡!
! = sin

!!
!!!!
!!

𝑢 sin!! 𝑢 .   (14) 

For the sake of continuity, the conditions   
𝑔! 𝑡!!! = 𝑔! 𝑡! = 0  and  𝑔! 𝑡! = 𝑔! 𝑡!!! = 1   (15) 

are required to be fulfilled (Kosmas and Leyendecker, 2012; Kosmas and Vlachos, 2012; Kosmas and 
Leyendecker, 2015).  We can then define discrete Lagrangian 𝐿! by a weighted sum of the form (Kosmas and 
Leyendecker, 2019; Kosmas 2020) 

𝐿! 𝑞! , 𝑞!!!, ℎ! = ℎ!𝑤!𝐿 𝑞 𝑡!
! , 𝑞 𝑡!

!!!!
!!! ,  (16) 

where, as can be readily proved, it holds (Kosmas and Leyendecker, 2012; Kosmas and Leyendecker, 2016; 
Kosmas and Leyendecker, 2019) 

𝑤! 𝐶!
! !!!!

!!! = !
!!!

,     (17) 
with 𝑚=0,1,...,S-1 and 𝑚=0,1,...,N-1.   
 

Figure2. Maximum of total energy errors.  

 
 

IV. NUMERICAL RESULTS 
As a numerical test we consider the planar double pendulum system of (Hairer et al., 2003), see Figure 

1, and denoting the masses and lengths by 𝑚!,𝑚! and 𝑙!, 𝑙! respectively (all masses and lengths are considered 
to be ones). Writing the configuration positions as   

𝑞 = 𝑥!  𝑦!  𝑥!  𝑦! !,    (18) 
the kinetic energy of the system can be written as 

𝑇 𝑞, 𝑞 = !
!
𝑞!𝑀𝑞,    (19) 

for the mass matrix   

𝑀 =

𝑚! 0 0 0
0 𝑚! 0 0
0 0 𝑚! 0
0 0 0 𝑚!

.   (20) 

The potential, using the gravitational constant 𝑔, is   
𝑉 𝑞 = 𝑚!𝑔𝑦! +𝑚!𝑔𝑦!.   (21) 

For that equation for the constraints of (2) can be written as  

𝜑 𝑞 = 𝑥!! + 𝑦!! − 𝑙!!

𝑥! − 𝑥! ! + 𝑦! − 𝑦! ! − 𝑙!!
= 0.  (22) 

We can now define the discrete Lagrangian of (16) which is then used to the discrete Euler-Lagrange equations 
of (5) in order to obtain the solution of the physical problem. 
 To test the proposed method we consider two different number of intermediate points at each time 
segments [𝑡! , 𝑡!!!] of the discrete Lagrangian (16), i.e. 𝑆 = 1 and 𝑆 = 3. As described in Section 3 the first 
corresponds to one intermediate point while the second to three. For those methods in Figure 2 we plot the 
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maximum error of the total energy 𝐻 of the system, 𝑚𝑎𝑥 𝜀 𝐻 , after 100 steps and compare them with the 
ones obtained using a standard Runge-Kutta method, see (Hairer et al., 2003). For the time steps chosen here, 
thus ℎ = 10!!, ℎ = 10!! and ℎ = 10!! the energy errors obtained from the proposed schemes converge to 
much smaller values. Same results are obtained in Figure 3, where the maximum error of the constrained 
equation, i.e. 𝑚𝑎𝑥 𝜀 𝜑  is presented. 
 

Figure3. Maximum of errors for constraints. 

 
 

V. CONCLUSION AND FUTURE WORK 
We examined the key role of the stability of exponential variational integrators when they are properly 

formulated for the numerical solution of multibody dynamical system with constraints. To do so we first defined 
a discrete Lagrangian that describes the physical problem, which is then combined with a discrete version of the 
constraints on a standard setting of the discrete Euler-Lagrangian equations with holonomic constraints. Finally, 
for the solution of the double pendulum system results obtained with methods of different numerical order, 
show that the proposed schemes preserve their good behavior when compared to other traditional methods.  
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